Properties

Label 1.2e2_3_5_7.6t1.2c2
Dimension 1
Group $C_6$
Conductor $ 2^{2} \cdot 3 \cdot 5 \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$420= 2^{2} \cdot 3 \cdot 5 \cdot 7 $
Artin number field: Splitting field of $f= x^{6} + 105 x^{4} + 3150 x^{2} + 23625 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{420}(59,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 14 + 2\cdot 29 + \left(10 a + 4\right)\cdot 29^{2} + \left(25 a + 14\right)\cdot 29^{3} + \left(20 a + 18\right)\cdot 29^{4} + \left(23 a + 23\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 5 + \left(18 a + 24\right)\cdot 29 + \left(13 a + 18\right)\cdot 29^{2} + \left(10 a + 9\right)\cdot 29^{3} + \left(13 a + 15\right)\cdot 29^{4} + \left(8 a + 14\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 11 + \left(12 a + 4\right)\cdot 29 + \left(20 a + 13\right)\cdot 29^{2} + \left(28 a + 25\right)\cdot 29^{3} + \left(9 a + 3\right)\cdot 29^{4} + \left(28 a + 21\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 23 a + 15 + \left(28 a + 26\right)\cdot 29 + \left(18 a + 24\right)\cdot 29^{2} + \left(3 a + 14\right)\cdot 29^{3} + \left(8 a + 10\right)\cdot 29^{4} + \left(5 a + 5\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 24 + \left(10 a + 4\right)\cdot 29 + \left(15 a + 10\right)\cdot 29^{2} + \left(18 a + 19\right)\cdot 29^{3} + \left(15 a + 13\right)\cdot 29^{4} + \left(20 a + 14\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 18 + \left(16 a + 24\right)\cdot 29 + \left(8 a + 15\right)\cdot 29^{2} + 3\cdot 29^{3} + \left(19 a + 25\right)\cdot 29^{4} + 7\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,6,5,4,3,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,5)(3,6)$$-1$
$1$$3$$(1,5,3)(2,6,4)$$-\zeta_{3} - 1$
$1$$3$$(1,3,5)(2,4,6)$$\zeta_{3}$
$1$$6$$(1,6,5,4,3,2)$$-\zeta_{3}$
$1$$6$$(1,2,3,4,5,6)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.