Properties

Label 1.2e2_3_17.8t1.1c3
Dimension 1
Group $C_8$
Conductor $ 2^{2} \cdot 3 \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$204= 2^{2} \cdot 3 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - 51 x^{6} + 612 x^{4} - 2295 x^{2} + 1377 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Even
Corresponding Dirichlet character: \(\chi_{204}(179,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 48\cdot 89 + 32\cdot 89^{2} + 8\cdot 89^{3} + 12\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 75\cdot 89 + 49\cdot 89^{2} + 11\cdot 89^{3} + 44\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 + 50\cdot 89 + 48\cdot 89^{2} + 78\cdot 89^{3} + 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 25 + 51\cdot 89 + 54\cdot 89^{2} + 85\cdot 89^{3} + 33\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 64 + 37\cdot 89 + 34\cdot 89^{2} + 3\cdot 89^{3} + 55\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 71 + 38\cdot 89 + 40\cdot 89^{2} + 10\cdot 89^{3} + 87\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 76 + 13\cdot 89 + 39\cdot 89^{2} + 77\cdot 89^{3} + 44\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 88 + 40\cdot 89 + 56\cdot 89^{2} + 80\cdot 89^{3} + 76\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,8,3)(2,4,7,5)$
$(1,5,6,2,8,4,3,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-1$
$1$$4$$(1,6,8,3)(2,4,7,5)$$\zeta_{8}^{2}$
$1$$4$$(1,3,8,6)(2,5,7,4)$$-\zeta_{8}^{2}$
$1$$8$$(1,5,6,2,8,4,3,7)$$-\zeta_{8}$
$1$$8$$(1,2,3,5,8,7,6,4)$$-\zeta_{8}^{3}$
$1$$8$$(1,4,6,7,8,5,3,2)$$\zeta_{8}$
$1$$8$$(1,7,3,4,8,2,6,5)$$\zeta_{8}^{3}$
The blue line marks the conjugacy class containing complex conjugation.