Properties

Label 1.2e2_37.6t1.1c1
Dimension 1
Group $C_6$
Conductor $ 2^{2} \cdot 37 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$148= 2^{2} \cdot 37 $
Artin number field: Splitting field of $f= x^{6} + 25 x^{4} + 122 x^{2} + 121 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{148}(47,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 23 + \left(24 a + 10\right)\cdot 31 + \left(15 a + 27\right)\cdot 31^{2} + \left(18 a + 4\right)\cdot 31^{3} + \left(29 a + 26\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 1 + \left(20 a + 25\right)\cdot 31 + \left(24 a + 16\right)\cdot 31^{2} + \left(9 a + 2\right)\cdot 31^{3} + \left(29 a + 22\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 26 + \left(6 a + 11\right)\cdot 31 + 18\cdot 31^{2} + \left(8 a + 7\right)\cdot 31^{3} + \left(10 a + 9\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 a + 8 + \left(6 a + 20\right)\cdot 31 + \left(15 a + 3\right)\cdot 31^{2} + \left(12 a + 26\right)\cdot 31^{3} + \left(a + 4\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ a + 30 + \left(10 a + 5\right)\cdot 31 + \left(6 a + 14\right)\cdot 31^{2} + \left(21 a + 28\right)\cdot 31^{3} + \left(a + 8\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 5 + \left(24 a + 19\right)\cdot 31 + \left(30 a + 12\right)\cdot 31^{2} + \left(22 a + 23\right)\cdot 31^{3} + \left(20 a + 21\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6,4,5,3)$
$(1,4)(2,5)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,5)(3,6)$$-1$
$1$$3$$(1,6,5)(2,4,3)$$\zeta_{3}$
$1$$3$$(1,5,6)(2,3,4)$$-\zeta_{3} - 1$
$1$$6$$(1,2,6,4,5,3)$$\zeta_{3} + 1$
$1$$6$$(1,3,5,4,6,2)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.