Properties

Label 1.2e2_19_29.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 2^{2} \cdot 19 \cdot 29 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$2204= 2^{2} \cdot 19 \cdot 29 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 76 x^{4} - 90 x^{3} + 2603 x^{2} - 2636 x + 36821 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{2204}(695,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 3 + \left(24 a + 15\right)\cdot 37 + \left(18 a + 7\right)\cdot 37^{2} + \left(4 a + 28\right)\cdot 37^{3} + \left(32 a + 34\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 4 + \left(24 a + 8\right)\cdot 37 + \left(18 a + 21\right)\cdot 37^{2} + \left(4 a + 9\right)\cdot 37^{3} + \left(32 a + 10\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 35 a + 12 + \left(12 a + 28\right)\cdot 37 + \left(18 a + 34\right)\cdot 37^{2} + \left(32 a + 8\right)\cdot 37^{3} + \left(4 a + 23\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 19 + \left(24 a + 20\right)\cdot 37 + \left(18 a + 6\right)\cdot 37^{2} + 4 a\cdot 37^{3} + \left(32 a + 28\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 35 a + 11 + \left(12 a + 35\right)\cdot 37 + \left(18 a + 20\right)\cdot 37^{2} + \left(32 a + 27\right)\cdot 37^{3} + \left(4 a + 10\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 35 a + 27 + \left(12 a + 3\right)\cdot 37 + \left(18 a + 20\right)\cdot 37^{2} + \left(32 a + 36\right)\cdot 37^{3} + \left(4 a + 3\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2)(3,5,6)$
$(1,5)(2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,3)(4,6)$$-1$
$1$$3$$(1,4,2)(3,5,6)$$\zeta_{3}$
$1$$3$$(1,2,4)(3,6,5)$$-\zeta_{3} - 1$
$1$$6$$(1,6,2,5,4,3)$$-\zeta_{3}$
$1$$6$$(1,3,4,5,2,6)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.