Properties

Label 1.2e2_19.6t1.2
Dimension 1
Group $C_6$
Conductor $ 2^{2} \cdot 19 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$76= 2^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{6} + 13 x^{4} + 50 x^{2} + 49 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 2 + \left(10 a + 5\right)\cdot 11 + \left(4 a + 6\right)\cdot 11^{2} + \left(3 a + 6\right)\cdot 11^{3} + \left(6 a + 5\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 4 + \left(a + 6\right)\cdot 11 + \left(a + 9\right)\cdot 11^{2} + \left(5 a + 6\right)\cdot 11^{3} + \left(8 a + 7\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 8 + \left(6 a + 6\right)\cdot 11 + 9 a\cdot 11^{2} + \left(8 a + 9\right)\cdot 11^{3} + \left(10 a + 4\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 9 + 5\cdot 11 + \left(6 a + 4\right)\cdot 11^{2} + \left(7 a + 4\right)\cdot 11^{3} + \left(4 a + 5\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 7 + \left(9 a + 4\right)\cdot 11 + \left(9 a + 1\right)\cdot 11^{2} + \left(5 a + 4\right)\cdot 11^{3} + \left(2 a + 3\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 3 + \left(4 a + 4\right)\cdot 11 + \left(a + 10\right)\cdot 11^{2} + \left(2 a + 1\right)\cdot 11^{3} + 6\cdot 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-1$ $-1$
$1$ $3$ $(1,2,3)(4,5,6)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,3,2)(4,6,5)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,5,3,4,2,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$1$ $6$ $(1,6,2,4,3,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.