Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 43 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 + 22\cdot 43 + 26\cdot 43^{2} + 2\cdot 43^{3} + 31\cdot 43^{4} + 5\cdot 43^{5} +O\left(43^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 20 + 11\cdot 43 + 37\cdot 43^{2} + 34\cdot 43^{3} + 15\cdot 43^{4} + 14\cdot 43^{5} +O\left(43^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 23 + 31\cdot 43 + 5\cdot 43^{2} + 8\cdot 43^{3} + 27\cdot 43^{4} + 28\cdot 43^{5} +O\left(43^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 29 + 20\cdot 43 + 16\cdot 43^{2} + 40\cdot 43^{3} + 11\cdot 43^{4} + 37\cdot 43^{5} +O\left(43^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,3,4,2)$ |
| $(1,4)(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,4)(2,3)$ | $-1$ |
| $1$ | $4$ | $(1,3,4,2)$ | $\zeta_{4}$ |
| $1$ | $4$ | $(1,2,4,3)$ | $-\zeta_{4}$ |
The blue line marks the conjugacy class containing complex conjugation.