Properties

Label 1.2e2_11_13.2t1.1
Dimension 1
Group $C_2$
Conductor $ 2^{2} \cdot 11 \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_2$
Conductor:$572= 2^{2} \cdot 11 \cdot 13 $
Artin number field: Splitting field of $f= x^{2} - 143 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 7\cdot 31 + 16\cdot 31^{2} + 30\cdot 31^{3} + 11\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 + 23\cdot 31 + 14\cdot 31^{2} + 19\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 } $

Cycle notation
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 } $ Character values
$c1$
$1$ $1$ $()$ $1$
$1$ $2$ $(1,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.