Properties

Label 1.280.4t1.b.a
Dimension $1$
Group $C_4$
Conductor $280$
Root number not computed
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension: $1$
Group: $C_4$
Conductor: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Artin field: 4.0.392000.2
Galois orbit size: $2$
Smallest permutation container: $C_4$
Parity: odd
Dirichlet character: \(\chi_{280}(83,\cdot)\)
Projective image: $C_1$
Projective field: \(\Q\)

Defining polynomial

$f(x)$$=$\(x^{4} + 70 x^{2} + 980\)  Toggle raw display.

The roots of $f$ are computed in $\Q_{ 11 }$ to precision 7.

Roots:
$r_{ 1 }$ $=$ \( 2 + 4\cdot 11 + 9\cdot 11^{4} + 8\cdot 11^{5} +O(11^{7})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 5 + 3\cdot 11 + 8\cdot 11^{2} + 3\cdot 11^{3} + 5\cdot 11^{4} + 6\cdot 11^{6} +O(11^{7})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 6 + 7\cdot 11 + 2\cdot 11^{2} + 7\cdot 11^{3} + 5\cdot 11^{4} + 10\cdot 11^{5} + 4\cdot 11^{6} +O(11^{7})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 9 + 6\cdot 11 + 10\cdot 11^{2} + 10\cdot 11^{3} + 11^{4} + 2\cdot 11^{5} + 10\cdot 11^{6} +O(11^{7})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)(2,3)$
$(1,2,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)$$-1$
$1$$4$$(1,2,4,3)$$\zeta_{4}$
$1$$4$$(1,3,4,2)$$-\zeta_{4}$

The blue line marks the conjugacy class containing complex conjugation.