Basic invariants
Dimension: | $1$ |
Group: | $C_6$ |
Conductor: | \(273\)\(\medspace = 3 \cdot 7 \cdot 13 \) |
Artin field: | Galois closure of 6.0.24069811311.2 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6$ |
Parity: | odd |
Dirichlet character: | \(\chi_{273}(212,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{6} - x^{5} + 34x^{4} - 9x^{3} + 786x^{2} + 738x + 9099 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{2} + 18x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 16 a + 5 + \left(18 a + 9\right)\cdot 19 + \left(9 a + 9\right)\cdot 19^{2} + \left(10 a + 13\right)\cdot 19^{3} + \left(13 a + 4\right)\cdot 19^{4} +O(19^{5})\) |
$r_{ 2 }$ | $=$ | \( 8 a + 6 + \left(13 a + 13\right)\cdot 19 + \left(a + 10\right)\cdot 19^{2} + \left(9 a + 4\right)\cdot 19^{3} + \left(11 a + 10\right)\cdot 19^{4} +O(19^{5})\) |
$r_{ 3 }$ | $=$ | \( 3 a + 2 + 12\cdot 19 + 9 a\cdot 19^{2} + \left(8 a + 14\right)\cdot 19^{3} + \left(5 a + 7\right)\cdot 19^{4} +O(19^{5})\) |
$r_{ 4 }$ | $=$ | \( 18 a + 16 + \left(13 a + 3\right)\cdot 19 + \left(18 a + 16\right)\cdot 19^{2} + \left(18 a + 15\right)\cdot 19^{3} + \left(15 a + 2\right)\cdot 19^{4} +O(19^{5})\) |
$r_{ 5 }$ | $=$ | \( 11 a + 14 + \left(5 a + 18\right)\cdot 19 + \left(17 a + 17\right)\cdot 19^{2} + \left(9 a + 11\right)\cdot 19^{3} + \left(7 a + 12\right)\cdot 19^{4} +O(19^{5})\) |
$r_{ 6 }$ | $=$ | \( a + 15 + \left(5 a + 18\right)\cdot 19 + 19^{2} + 16\cdot 19^{3} + \left(3 a + 18\right)\cdot 19^{4} +O(19^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $1$ |
$1$ | $2$ | $(1,3)(2,5)(4,6)$ | $-1$ |
$1$ | $3$ | $(1,5,4)(2,6,3)$ | $\zeta_{3}$ |
$1$ | $3$ | $(1,4,5)(2,3,6)$ | $-\zeta_{3} - 1$ |
$1$ | $6$ | $(1,6,5,3,4,2)$ | $\zeta_{3} + 1$ |
$1$ | $6$ | $(1,2,4,3,5,6)$ | $-\zeta_{3}$ |
The blue line marks the conjugacy class containing complex conjugation.