Basic invariants
Dimension: | $1$ |
Group: | $C_6$ |
Conductor: | \(273\)\(\medspace = 3 \cdot 7 \cdot 13 \) |
Artin field: | Galois closure of 6.0.1851523947.2 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6$ |
Parity: | odd |
Dirichlet character: | \(\chi_{273}(107,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} - x^{5} + 31x^{4} - 98x^{3} + 964x^{2} - 1920x + 4096 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$:
\( x^{2} + 21x + 5 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 2 a + 4 + \left(19 a + 16\right)\cdot 23 + \left(3 a + 12\right)\cdot 23^{2} + \left(22 a + 17\right)\cdot 23^{3} + \left(18 a + 16\right)\cdot 23^{4} +O(23^{5})\)
$r_{ 2 }$ |
$=$ |
\( 4 a + 7 + \left(11 a + 3\right)\cdot 23 + \left(4 a + 8\right)\cdot 23^{2} + \left(16 a + 20\right)\cdot 23^{3} + \left(2 a + 19\right)\cdot 23^{4} +O(23^{5})\)
| $r_{ 3 }$ |
$=$ |
\( 17 a + 1 + \left(11 a + 19\right)\cdot 23 + \left(15 a + 10\right)\cdot 23^{2} + \left(10 a + 5\right)\cdot 23^{3} + \left(14 a + 9\right)\cdot 23^{4} +O(23^{5})\)
| $r_{ 4 }$ |
$=$ |
\( 19 a + 15 + \left(11 a + 21\right)\cdot 23 + \left(18 a + 5\right)\cdot 23^{2} + \left(6 a + 2\right)\cdot 23^{3} + \left(20 a + 9\right)\cdot 23^{4} +O(23^{5})\)
| $r_{ 5 }$ |
$=$ |
\( 21 a + 8 + \left(3 a + 6\right)\cdot 23 + \left(19 a + 1\right)\cdot 23^{2} + 12\cdot 23^{3} + \left(4 a + 9\right)\cdot 23^{4} +O(23^{5})\)
| $r_{ 6 }$ |
$=$ |
\( 6 a + 12 + \left(11 a + 2\right)\cdot 23 + \left(7 a + 7\right)\cdot 23^{2} + \left(12 a + 11\right)\cdot 23^{3} + \left(8 a + 4\right)\cdot 23^{4} +O(23^{5})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $1$ |
$1$ | $2$ | $(1,5)(2,4)(3,6)$ | $-1$ |
$1$ | $3$ | $(1,4,6)(2,3,5)$ | $\zeta_{3}$ |
$1$ | $3$ | $(1,6,4)(2,5,3)$ | $-\zeta_{3} - 1$ |
$1$ | $6$ | $(1,3,4,5,6,2)$ | $\zeta_{3} + 1$ |
$1$ | $6$ | $(1,2,6,5,4,3)$ | $-\zeta_{3}$ |
The blue line marks the conjugacy class containing complex conjugation.