Properties

Label 1.271.9t1.1c2
Dimension 1
Group $C_9$
Conductor $ 271 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_9$
Conductor:$271 $
Artin number field: Splitting field of $f= x^{9} - x^{8} - 120 x^{7} + 543 x^{6} + 858 x^{5} - 6780 x^{4} + 7217 x^{3} + 2818 x^{2} - 4068 x + 261 $ over $\Q$
Size of Galois orbit: 6
Smallest containing permutation representation: $C_9$
Parity: Even
Corresponding Dirichlet character: \(\chi_{271}(169,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 9 a^{2} + 10 a + 6 + \left(10 a^{2} + 4 a\right)\cdot 13 + \left(12 a^{2} + 5\right)\cdot 13^{2} + \left(a^{2} + 9\right)\cdot 13^{3} + \left(3 a^{2} + 12 a + 8\right)\cdot 13^{4} + \left(4 a^{2} + 4 a + 3\right)\cdot 13^{5} + \left(10 a^{2} + 3 a + 5\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 10 a^{2} + a + 5 + \left(7 a^{2} + a + 8\right)\cdot 13 + \left(12 a^{2} + a + 4\right)\cdot 13^{2} + \left(a^{2} + 3 a + 9\right)\cdot 13^{3} + \left(3 a^{2} + 10 a + 6\right)\cdot 13^{4} + \left(11 a^{2} + 7 a + 10\right)\cdot 13^{5} + \left(5 a^{2} + 7 a\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 6 a^{2} + 12 a + 1 + \left(10 a^{2} + 6 a + 8\right)\cdot 13 + \left(2 a^{2} + 8 a + 10\right)\cdot 13^{2} + \left(5 a^{2} + 4 a + 10\right)\cdot 13^{3} + \left(10 a^{2} + 12 a + 6\right)\cdot 13^{4} + \left(5 a^{2} + 5 a + 5\right)\cdot 13^{5} + \left(11 a^{2} + 7 a\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 12 a^{2} + 9 + \left(4 a^{2} + 5 a\right)\cdot 13 + 3\cdot 13^{2} + \left(2 a^{2} + 3 a + 2\right)\cdot 13^{3} + \left(7 a + 6\right)\cdot 13^{4} + \left(2 a^{2} + 6 a\right)\cdot 13^{5} + \left(9 a + 7\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 7 + \left(2 a^{2} + 7 a + 10\right)\cdot 13 + \left(7 a^{2} + 11 a + 1\right)\cdot 13^{2} + \left(8 a^{2} + 2 a + 5\right)\cdot 13^{3} + \left(6 a^{2} + a\right)\cdot 13^{4} + \left(10 a^{2} + a + 12\right)\cdot 13^{5} + \left(9 a^{2} + 5 a + 8\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 8 a^{2} + a + 8 + \left(10 a^{2} + a + 12\right)\cdot 13 + \left(9 a^{2} + 4 a + 6\right)\cdot 13^{2} + \left(5 a^{2} + 5 a + 11\right)\cdot 13^{3} + \left(2 a^{2} + 6 a + 4\right)\cdot 13^{4} + 5 a^{2}13^{5} + \left(a^{2} + 9 a\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 4 a^{2} + 9 a + 8 + 12\cdot 13 + \left(6 a^{2} + a + 8\right)\cdot 13^{2} + \left(2 a^{2} + 10 a + 5\right)\cdot 13^{3} + \left(3 a^{2} + 12 a + 4\right)\cdot 13^{4} + \left(11 a^{2} + 6 a + 4\right)\cdot 13^{5} + \left(5 a^{2} + 4 a + 12\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 3 a^{2} + 10 a + \left(9 a^{2} + 2 a + 6\right)\cdot 13 + \left(3 a^{2} + 5 a + 1\right)\cdot 13^{2} + \left(2 a^{2} + a + 1\right)\cdot 13^{3} + \left(a^{2} + a + 4\right)\cdot 13^{4} + \left(8 a^{2} + 6 a + 6\right)\cdot 13^{5} + \left(5 a^{2} + 10 a\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 2 a + 9 + \left(9 a^{2} + 9 a + 5\right)\cdot 13 + \left(9 a^{2} + 6 a + 9\right)\cdot 13^{2} + \left(8 a^{2} + 8 a + 9\right)\cdot 13^{3} + \left(8 a^{2} + a + 9\right)\cdot 13^{4} + \left(6 a^{2} + 12 a + 8\right)\cdot 13^{5} + \left(a^{2} + 7 a + 3\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5,7)(2,9,8)(3,6,4)$
$(1,3,9,7,4,2,5,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$1$
$1$$3$$(1,7,5)(2,8,9)(3,4,6)$$-\zeta_{9}^{3} - 1$
$1$$3$$(1,5,7)(2,9,8)(3,6,4)$$\zeta_{9}^{3}$
$1$$9$$(1,3,9,7,4,2,5,6,8)$$\zeta_{9}^{2}$
$1$$9$$(1,9,4,5,8,3,7,2,6)$$\zeta_{9}^{4}$
$1$$9$$(1,4,8,7,6,9,5,3,2)$$-\zeta_{9}^{5} - \zeta_{9}^{2}$
$1$$9$$(1,2,3,5,9,6,7,8,4)$$\zeta_{9}$
$1$$9$$(1,6,2,7,3,8,5,4,9)$$\zeta_{9}^{5}$
$1$$9$$(1,8,6,5,2,4,7,9,3)$$-\zeta_{9}^{4} - \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.