Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 23 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 9\cdot 23 + 2\cdot 23^{2} + 17\cdot 23^{3} + 2\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 6 + 22\cdot 23 + 4\cdot 23^{2} + 19\cdot 23^{3} + 13\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 8 + 12\cdot 23 + 15\cdot 23^{2} + 9\cdot 23^{3} + 16\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 15 + 17\cdot 23 + 4\cdot 23^{2} + 5\cdot 23^{3} + 15\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 16 + 7\cdot 23 + 18\cdot 23^{2} + 17\cdot 23^{3} + 20\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,3,5,2,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $5$ | $(1,3,5,2,4)$ | $\zeta_{5}^{3}$ |
| $1$ | $5$ | $(1,5,4,3,2)$ | $\zeta_{5}$ |
| $1$ | $5$ | $(1,2,3,4,5)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ |
| $1$ | $5$ | $(1,4,2,5,3)$ | $\zeta_{5}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.