Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 + 10\cdot 53 + 31\cdot 53^{2} + 14\cdot 53^{3} + 48\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 22 + 15\cdot 53 + 31\cdot 53^{2} + 15\cdot 53^{3} + 20\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 29 + 27\cdot 53 + 43\cdot 53^{2} + 22\cdot 53^{3} + 37\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
Generators of the action on the roots
$ r_{ 1 }, r_{ 2 }, r_{ 3 } $
Character values on conjugacy classes
| Size | Order | Action on
$ r_{ 1 }, r_{ 2 }, r_{ 3 } $
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $3$ | $(1,2,3)$ | $\zeta_{3}$ |
| $1$ | $3$ | $(1,3,2)$ | $-\zeta_{3} - 1$ |
The blue line marks the conjugacy class containing complex conjugation.