Properties

Label 1.247.6t1.a
Dimension $1$
Group $C_6$
Conductor $247$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:\(247\)\(\medspace = 13 \cdot 19 \)
Artin number field: Galois closure of 6.0.5439989503.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: \( x^{2} + 82x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 44 a + 29 + \left(13 a + 17\right)\cdot 83 + \left(37 a + 32\right)\cdot 83^{2} + \left(29 a + 27\right)\cdot 83^{3} + \left(5 a + 43\right)\cdot 83^{4} +O(83^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( a + 12 + 74 a\cdot 83 + \left(75 a + 20\right)\cdot 83^{2} + \left(45 a + 16\right)\cdot 83^{3} + \left(23 a + 31\right)\cdot 83^{4} +O(83^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 82 a + 13 + \left(8 a + 73\right)\cdot 83 + \left(7 a + 21\right)\cdot 83^{2} + \left(37 a + 69\right)\cdot 83^{3} + \left(59 a + 8\right)\cdot 83^{4} +O(83^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 60 a + 73 + \left(50 a + 48\right)\cdot 83 + \left(31 a + 27\right)\cdot 83^{2} + \left(78 a + 76\right)\cdot 83^{3} + \left(27 a + 56\right)\cdot 83^{4} +O(83^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 39 a + 73 + \left(69 a + 69\right)\cdot 83 + \left(45 a + 55\right)\cdot 83^{2} + \left(53 a + 19\right)\cdot 83^{3} + \left(77 a + 19\right)\cdot 83^{4} +O(83^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 23 a + 50 + \left(32 a + 39\right)\cdot 83 + \left(51 a + 8\right)\cdot 83^{2} + \left(4 a + 40\right)\cdot 83^{3} + \left(55 a + 6\right)\cdot 83^{4} +O(83^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,2)(3,5,4)$
$(1,5)(2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,5)(2,3)(4,6)$ $-1$ $-1$
$1$ $3$ $(1,6,2)(3,5,4)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $3$ $(1,2,6)(3,4,5)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $6$ $(1,4,2,5,6,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,3,6,5,2,4)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.