Properties

Label 1.240.4t1.f.a
Dimension $1$
Group $C_4$
Conductor $240$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_4$
Conductor: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Artin field: Galois closure of 4.0.2304000.2
Galois orbit size: $2$
Smallest permutation container: $C_4$
Parity: odd
Dirichlet character: \(\chi_{240}(227,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{4} + 60x^{2} + 810 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 13 }$ to precision 6.

Roots:
$r_{ 1 }$ $=$ \( 1 + 9\cdot 13 + 7\cdot 13^{2} + 5\cdot 13^{3} + 6\cdot 13^{4} + 9\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 2 + 4\cdot 13 + 4\cdot 13^{2} + 13^{3} + 8\cdot 13^{4} + 10\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 11 + 8\cdot 13 + 8\cdot 13^{2} + 11\cdot 13^{3} + 4\cdot 13^{4} + 2\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 12 + 3\cdot 13 + 5\cdot 13^{2} + 7\cdot 13^{3} + 6\cdot 13^{4} + 3\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3,4,2)$
$(1,4)(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)$$-1$
$1$$4$$(1,3,4,2)$$\zeta_{4}$
$1$$4$$(1,2,4,3)$$-\zeta_{4}$

The blue line marks the conjugacy class containing complex conjugation.