Properties

Label 1.240.4t1.a.a
Dimension $1$
Group $C_4$
Conductor $240$
Root number not computed
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension: $1$
Group: $C_4$
Conductor: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Artin field: 4.4.460800.1
Galois orbit size: $2$
Smallest permutation container: $C_4$
Parity: even
Dirichlet character: \(\chi_{240}(179,\cdot)\)
Projective image: C_1
Projective field: \(\Q\)

Defining polynomial

$f(x)$$=$\(x^{4} - 60 x^{2} + 450\)  Toggle raw display.

The roots of $f$ are computed in $\Q_{ 17 }$ to precision 6.

Roots:
$r_{ 1 }$ $=$ \( 1 + 15\cdot 17 + 15\cdot 17^{2} + 4\cdot 17^{3} + 8\cdot 17^{4} + 11\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 5 + 4\cdot 17 + 15\cdot 17^{2} + 6\cdot 17^{3} + 16\cdot 17^{4} + 6\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 12 + 12\cdot 17 + 17^{2} + 10\cdot 17^{3} + 10\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 16 + 17 + 17^{2} + 12\cdot 17^{3} + 8\cdot 17^{4} + 5\cdot 17^{5} +O(17^{6})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)(2,3)$
$(1,2,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)$$-1$
$1$$4$$(1,2,4,3)$$\zeta_{4}$
$1$$4$$(1,3,4,2)$$-\zeta_{4}$

The blue line marks the conjugacy class containing complex conjugation.