Properties

Label 1.23_97.6t1.1
Dimension 1
Group $C_6$
Conductor $ 23 \cdot 97 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$2231= 23 \cdot 97 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 47 x^{4} - 105 x^{3} + 1205 x^{2} + 6377 x + 11903 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 21 a + 33 + 58 a\cdot 67 + \left(3 a + 58\right)\cdot 67^{2} + \left(52 a + 13\right)\cdot 67^{3} + 4 a\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 53 + \left(58 a + 49\right)\cdot 67 + \left(3 a + 10\right)\cdot 67^{2} + \left(52 a + 37\right)\cdot 67^{3} + \left(4 a + 33\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 46 a + 50 + \left(8 a + 11\right)\cdot 67 + \left(63 a + 15\right)\cdot 67^{2} + \left(14 a + 17\right)\cdot 67^{3} + \left(62 a + 34\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 46 a + 3 + \left(8 a + 61\right)\cdot 67 + \left(63 a + 34\right)\cdot 67^{2} + \left(14 a + 40\right)\cdot 67^{3} + 62 a\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 23 + \left(58 a + 33\right)\cdot 67 + \left(3 a + 62\right)\cdot 67^{2} + \left(52 a + 10\right)\cdot 67^{3} + \left(4 a + 49\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 46 a + 40 + \left(8 a + 44\right)\cdot 67 + \left(63 a + 19\right)\cdot 67^{2} + \left(14 a + 14\right)\cdot 67^{3} + \left(62 a + 16\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2,5)(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,3)(2,4)(5,6)$ $-1$ $-1$
$1$ $3$ $(1,2,5)(3,4,6)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,5,2)(3,6,4)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,4,5,3,2,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$1$ $6$ $(1,6,2,3,5,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.