Properties

Label 1.23_37.6t1.1
Dimension 1
Group $C_6$
Conductor $ 23 \cdot 37 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$851= 23 \cdot 37 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 7 x^{4} + 35 x^{3} + 235 x^{2} - 973 x + 2263 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 36 a + 20 + \left(12 a + 23\right)\cdot 43 + \left(32 a + 21\right)\cdot 43^{2} + \left(33 a + 40\right)\cdot 43^{3} + \left(38 a + 31\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 1 + \left(30 a + 9\right)\cdot 43 + \left(10 a + 19\right)\cdot 43^{2} + \left(9 a + 2\right)\cdot 43^{3} + \left(4 a + 37\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 13 + 30 a\cdot 43 + \left(10 a + 41\right)\cdot 43^{2} + \left(9 a + 41\right)\cdot 43^{3} + \left(4 a + 36\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 19 + \left(30 a + 20\right)\cdot 43 + \left(10 a + 33\right)\cdot 43^{2} + 9 a\cdot 43^{3} + \left(4 a + 41\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 36 a + 26 + 12 a\cdot 43 + \left(32 a + 14\right)\cdot 43^{2} + \left(33 a + 42\right)\cdot 43^{3} + \left(38 a + 35\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 36 a + 8 + \left(12 a + 32\right)\cdot 43 + \left(32 a + 42\right)\cdot 43^{2} + 33 a\cdot 43^{3} + \left(38 a + 32\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,5,3,6,4)$
$(1,3)(2,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,3)(2,6)(4,5)$ $-1$ $-1$
$1$ $3$ $(1,5,6)(2,3,4)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,6,5)(2,4,3)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,2,5,3,6,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,4,6,3,5,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.