Properties

Label 1.23_103.6t1.1c1
Dimension 1
Group $C_6$
Conductor $ 23 \cdot 103 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$2369= 23 \cdot 103 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 51 x^{4} - 65 x^{3} + 1319 x^{2} + 4683 x + 10881 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{2369}(2322,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 11 + \left(4 a + 16\right)\cdot 37 + \left(17 a + 8\right)\cdot 37^{2} + \left(11 a + 30\right)\cdot 37^{3} + \left(6 a + 7\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 a + 32 + \left(32 a + 17\right)\cdot 37 + \left(19 a + 28\right)\cdot 37^{2} + \left(25 a + 1\right)\cdot 37^{3} + \left(30 a + 6\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 4 + \left(32 a + 23\right)\cdot 37 + \left(19 a + 13\right)\cdot 37^{2} + \left(25 a + 19\right)\cdot 37^{3} + \left(30 a + 11\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 a + 30 + \left(32 a + 19\right)\cdot 37 + \left(19 a + 35\right)\cdot 37^{2} + \left(25 a + 21\right)\cdot 37^{3} + \left(30 a + 21\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 13 + \left(4 a + 14\right)\cdot 37 + \left(17 a + 1\right)\cdot 37^{2} + \left(11 a + 10\right)\cdot 37^{3} + \left(6 a + 29\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 22 + \left(4 a + 19\right)\cdot 37 + \left(17 a + 23\right)\cdot 37^{2} + \left(11 a + 27\right)\cdot 37^{3} + \left(6 a + 34\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6,4,5,3)$
$(1,4)(2,5)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,5)(3,6)$$-1$
$1$$3$$(1,6,5)(2,4,3)$$\zeta_{3}$
$1$$3$$(1,5,6)(2,3,4)$$-\zeta_{3} - 1$
$1$$6$$(1,2,6,4,5,3)$$\zeta_{3} + 1$
$1$$6$$(1,3,5,4,6,2)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.