Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 a + 11 + \left(4 a + 16\right)\cdot 37 + \left(17 a + 8\right)\cdot 37^{2} + \left(11 a + 30\right)\cdot 37^{3} + \left(6 a + 7\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 23 a + 32 + \left(32 a + 17\right)\cdot 37 + \left(19 a + 28\right)\cdot 37^{2} + \left(25 a + 1\right)\cdot 37^{3} + \left(30 a + 6\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 23 a + 4 + \left(32 a + 23\right)\cdot 37 + \left(19 a + 13\right)\cdot 37^{2} + \left(25 a + 19\right)\cdot 37^{3} + \left(30 a + 11\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 23 a + 30 + \left(32 a + 19\right)\cdot 37 + \left(19 a + 35\right)\cdot 37^{2} + \left(25 a + 21\right)\cdot 37^{3} + \left(30 a + 21\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 14 a + 13 + \left(4 a + 14\right)\cdot 37 + \left(17 a + 1\right)\cdot 37^{2} + \left(11 a + 10\right)\cdot 37^{3} + \left(6 a + 29\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 14 a + 22 + \left(4 a + 19\right)\cdot 37 + \left(17 a + 23\right)\cdot 37^{2} + \left(11 a + 27\right)\cdot 37^{3} + \left(6 a + 34\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2,6,4,5,3)$ |
| $(1,4)(2,5)(3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-1$ |
| $1$ | $3$ | $(1,6,5)(2,4,3)$ | $\zeta_{3}$ |
| $1$ | $3$ | $(1,5,6)(2,3,4)$ | $-\zeta_{3} - 1$ |
| $1$ | $6$ | $(1,2,6,4,5,3)$ | $\zeta_{3} + 1$ |
| $1$ | $6$ | $(1,3,5,4,6,2)$ | $-\zeta_{3}$ |
The blue line marks the conjugacy class containing complex conjugation.