Basic invariants
Defining polynomial
$f(x)$ | $=$ | \(x^{2} - x + 5157\) ![]() |
The roots of $f$ are computed in $\Q_{ 3 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 2\cdot 3^{3} +O(3^{5})\) ![]() |
$r_{ 2 }$ | $=$ | \( 1 + 3^{3} + 2\cdot 3^{4} +O(3^{5})\) ![]() |
Generators of the action on the roots $ r_{ 1 }, r_{ 2 } $
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $ r_{ 1 }, r_{ 2 } $ | Character value |
$1$ | $1$ | $()$ | $1$ |
$1$ | $2$ | $(1,2)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.