Properties

Label 1.19_139.6t1.2c1
Dimension 1
Group $C_6$
Conductor $ 19 \cdot 139 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$2641= 19 \cdot 139 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 92 x^{4} - 71 x^{3} + 3683 x^{2} - 134 x + 58597 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{2641}(277,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 82 a + 52 + \left(65 a + 40\right)\cdot 103 + \left(81 a + 76\right)\cdot 103^{2} + \left(64 a + 23\right)\cdot 103^{3} + \left(65 a + 8\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 80 + \left(37 a + 24\right)\cdot 103 + \left(21 a + 33\right)\cdot 103^{2} + \left(38 a + 26\right)\cdot 103^{3} + \left(37 a + 85\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 82 a + 101 + \left(65 a + 40\right)\cdot 103 + \left(81 a + 17\right)\cdot 103^{2} + \left(64 a + 43\right)\cdot 103^{3} + \left(65 a + 84\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 82 a + 85 + \left(65 a + 45\right)\cdot 103 + \left(81 a + 88\right)\cdot 103^{2} + \left(64 a + 9\right)\cdot 103^{3} + \left(65 a + 9\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 31 + \left(37 a + 24\right)\cdot 103 + \left(21 a + 92\right)\cdot 103^{2} + \left(38 a + 6\right)\cdot 103^{3} + \left(37 a + 9\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 21 a + 64 + \left(37 a + 29\right)\cdot 103 + \left(21 a + 1\right)\cdot 103^{2} + \left(38 a + 96\right)\cdot 103^{3} + \left(37 a + 9\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,3,5,4,2)$
$(1,5)(2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,3)(4,6)$$-1$
$1$$3$$(1,3,4)(2,6,5)$$\zeta_{3}$
$1$$3$$(1,4,3)(2,5,6)$$-\zeta_{3} - 1$
$1$$6$$(1,6,3,5,4,2)$$\zeta_{3} + 1$
$1$$6$$(1,2,4,5,3,6)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.