Properties

Label 1.191.5t1.1c3
Dimension 1
Group $C_5$
Conductor $ 191 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$191 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 76 x^{3} + 359 x^{2} - 437 x + 155 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even
Corresponding Dirichlet character: \(\chi_{191}(184,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 12\cdot 31 + 12\cdot 31^{2} + 21\cdot 31^{4} + 26\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 11 + 30\cdot 31 + 4\cdot 31^{2} + 21\cdot 31^{3} + 18\cdot 31^{4} + 24\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 12 + 20\cdot 31 + 24\cdot 31^{2} + 10\cdot 31^{3} + 28\cdot 31^{4} + 20\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 17 + 2\cdot 31 + 14\cdot 31^{2} + 18\cdot 31^{3} + 10\cdot 31^{4} + 9\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 23 + 27\cdot 31 + 5\cdot 31^{2} + 11\cdot 31^{3} + 14\cdot 31^{4} + 11\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$1$
$1$$5$$(1,2,3,5,4)$$\zeta_{5}^{3}$
$1$$5$$(1,3,4,2,5)$$\zeta_{5}$
$1$$5$$(1,5,2,4,3)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,4,5,3,2)$$\zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.