Basic invariants
Dimension: | $1$ |
Group: | $C_6$ |
Conductor: | \(19\) |
Artin field: | Galois closure of 6.0.2476099.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6$ |
Parity: | odd |
Dirichlet character: | \(\chi_{19}(12,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} - x^{5} + 2x^{4} + 8x^{3} - x^{2} - 5x + 7 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$:
\( x^{2} + 29x + 3 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 17 a + 22 + \left(15 a + 9\right)\cdot 31 + \left(27 a + 14\right)\cdot 31^{2} + \left(15 a + 29\right)\cdot 31^{3} + \left(23 a + 19\right)\cdot 31^{4} +O(31^{5})\)
|
$r_{ 2 }$ | $=$ |
\( 14 a + 25 + \left(15 a + 23\right)\cdot 31 + \left(3 a + 22\right)\cdot 31^{2} + \left(15 a + 2\right)\cdot 31^{3} + \left(7 a + 20\right)\cdot 31^{4} +O(31^{5})\)
|
$r_{ 3 }$ | $=$ |
\( 10 a + 23 + \left(27 a + 13\right)\cdot 31 + \left(8 a + 26\right)\cdot 31^{2} + \left(15 a + 4\right)\cdot 31^{3} + \left(18 a + 30\right)\cdot 31^{4} +O(31^{5})\)
|
$r_{ 4 }$ | $=$ |
\( 21 a + 12 + \left(3 a + 27\right)\cdot 31 + \left(22 a + 16\right)\cdot 31^{2} + \left(15 a + 26\right)\cdot 31^{3} + \left(12 a + 20\right)\cdot 31^{4} +O(31^{5})\)
|
$r_{ 5 }$ | $=$ |
\( 11 a + 26 + 29\cdot 31 + \left(23 a + 29\right)\cdot 31^{2} + \left(17 a + 23\right)\cdot 31^{3} + \left(30 a + 25\right)\cdot 31^{4} +O(31^{5})\)
|
$r_{ 6 }$ | $=$ |
\( 20 a + 17 + \left(30 a + 19\right)\cdot 31 + \left(7 a + 13\right)\cdot 31^{2} + \left(13 a + 5\right)\cdot 31^{3} + 7\cdot 31^{4} +O(31^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $1$ | |
$1$ | $2$ | $(1,2)(3,4)(5,6)$ | $-1$ | ✓ |
$1$ | $3$ | $(1,4,5)(2,3,6)$ | $\zeta_{3}$ | |
$1$ | $3$ | $(1,5,4)(2,6,3)$ | $-\zeta_{3} - 1$ | |
$1$ | $6$ | $(1,6,4,2,5,3)$ | $\zeta_{3} + 1$ | |
$1$ | $6$ | $(1,3,5,2,4,6)$ | $-\zeta_{3}$ |