# Properties

 Label 1.19.3t1.a Dimension $1$ Group $C_3$ Conductor $19$ Indicator $0$

# Related objects

## Basic invariants

 Dimension: $1$ Group: $C_3$ Conductor: $$19$$ Artin number field: Galois closure of 3.3.361.1 Galois orbit size: $2$ Smallest permutation container: $C_3$ Parity: even Projective image: $C_1$ Projective field: Galois closure of $$\Q$$

## Galois action

### Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 7 }$ to precision 5.
Roots:
 $r_{ 1 }$ $=$ $$6\cdot 7 + 6\cdot 7^{2} + 6\cdot 7^{4} +O(7^{5})$$ 6*7 + 6*7^2 + 6*7^4+O(7^5) $r_{ 2 }$ $=$ $$3 + 6\cdot 7 + 5\cdot 7^{4} +O(7^{5})$$ 3 + 6*7 + 5*7^4+O(7^5) $r_{ 3 }$ $=$ $$5 + 7 + 6\cdot 7^{2} + 5\cdot 7^{3} + 2\cdot 7^{4} +O(7^{5})$$ 5 + 7 + 6*7^2 + 5*7^3 + 2*7^4+O(7^5)

### Generators of the action on the roots $r_{ 1 }, r_{ 2 }, r_{ 3 }$

 Cycle notation $(1,2,3)$

### Character values on conjugacy classes

 Size Order Action on $r_{ 1 }, r_{ 2 }, r_{ 3 }$ Character values $c1$ $c2$ $1$ $1$ $()$ $1$ $1$ $1$ $3$ $(1,2,3)$ $\zeta_{3}$ $-\zeta_{3} - 1$ $1$ $3$ $(1,3,2)$ $-\zeta_{3} - 1$ $\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.