Properties

Label 1.183.2t1.a
Dimension $1$
Group $C_2$
Conductor $183$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$1$
Group:$C_2$
Conductor:\(183\)\(\medspace = 3 \cdot 61 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of \(\Q(\sqrt{-183}) \)
Galois orbit size: $1$
Smallest permutation container: $C_2$
Parity: odd
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 11 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 5 + 3\cdot 11 + 6\cdot 11^{2} + 10\cdot 11^{3} + 10\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 7 + 7\cdot 11 + 4\cdot 11^{2} +O(11^{5})\) Copy content Toggle raw display

Generators of the action on the roots $ r_{ 1 }, r_{ 2 } $

Cycle notation
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 } $ Character values
$c1$
$1$ $1$ $()$ $1$
$1$ $2$ $(1,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.