Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 17 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 1 + 2\cdot 17 + 15\cdot 17^{2} + 15\cdot 17^{3} + 8\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 5 + 12\cdot 17 + 13\cdot 17^{2} + 16\cdot 17^{3} + 16\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 8 + 4\cdot 17 + 4\cdot 17^{2} + 9\cdot 17^{3} + 11\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 9 + 4\cdot 17 + 4\cdot 17^{2} + 3\cdot 17^{3} + 3\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 12 + 10\cdot 17 + 13\cdot 17^{2} + 5\cdot 17^{3} + 10\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,3,4,5,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $5$ | $(1,3,4,5,2)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ |
| $1$ | $5$ | $(1,4,2,3,5)$ | $\zeta_{5}^{3}$ |
| $1$ | $5$ | $(1,5,3,2,4)$ | $\zeta_{5}^{2}$ |
| $1$ | $5$ | $(1,2,5,4,3)$ | $\zeta_{5}$ |
The blue line marks the conjugacy class containing complex conjugation.