Properties

Label 1.17_67.8t1.1c2
Dimension 1
Group $C_8$
Conductor $ 17 \cdot 67 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$1139= 17 \cdot 67 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 282 x^{6} - 283 x^{5} + 18511 x^{4} - 33245 x^{3} + 398810 x^{2} - 865551 x + 2073287 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{1139}(535,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 55\cdot 103 + 55\cdot 103^{2} + 97\cdot 103^{3} + 36\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 + 53\cdot 103 + 92\cdot 103^{2} + 23\cdot 103^{3} + 74\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 42 + 88\cdot 103 + 89\cdot 103^{2} + 77\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 43 + 25\cdot 103 + 28\cdot 103^{2} + 4\cdot 103^{3} + 75\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 54 + 50\cdot 103 + 95\cdot 103^{2} + 77\cdot 103^{3} + 5\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 69 + 37\cdot 103 + 88\cdot 103^{2} + 89\cdot 103^{3} + 67\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 83 + 2\cdot 103 + 79\cdot 103^{2} + 84\cdot 103^{3} + 3\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 96 + 98\cdot 103 + 88\cdot 103^{2} + 32\cdot 103^{3} + 71\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,3,7)(2,4,5,6)$
$(1,2,8,4,3,5,7,6)$
$(1,3)(2,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,5)(4,6)(7,8)$$-1$
$1$$4$$(1,8,3,7)(2,4,5,6)$$-\zeta_{8}^{2}$
$1$$4$$(1,7,3,8)(2,6,5,4)$$\zeta_{8}^{2}$
$1$$8$$(1,2,8,4,3,5,7,6)$$\zeta_{8}^{3}$
$1$$8$$(1,4,7,2,3,6,8,5)$$\zeta_{8}$
$1$$8$$(1,5,8,6,3,2,7,4)$$-\zeta_{8}^{3}$
$1$$8$$(1,6,7,5,3,4,8,2)$$-\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.