Properties

Label 1.17_31.8t1.1c3
Dimension 1
Group $C_8$
Conductor $ 17 \cdot 31 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$527= 17 \cdot 31 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 129 x^{6} - 130 x^{5} + 3823 x^{4} - 7082 x^{3} + 39566 x^{2} - 84180 x + 136001 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{527}(495,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 30 + 23\cdot 67 + 46\cdot 67^{2} + 26\cdot 67^{3} + 26\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 35 + 56\cdot 67 + 56\cdot 67^{2} + 52\cdot 67^{3} + 56\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 + 27\cdot 67 + 11\cdot 67^{2} + 25\cdot 67^{3} + 13\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 39 + 41\cdot 67 + 44\cdot 67^{2} + 38\cdot 67^{3} + 66\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 40 + 61\cdot 67 + 3\cdot 67^{2} + 15\cdot 67^{3} + 42\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 47 + 40\cdot 67 + 35\cdot 67^{2} + 38\cdot 67^{3} + 50\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 48 + 34\cdot 67 + 21\cdot 67^{2} + 30\cdot 67^{3} + 12\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 59 + 48\cdot 67 + 47\cdot 67^{2} + 40\cdot 67^{3} + 66\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,7,3)(4,8,5,6)$
$(1,5,2,6,7,4,3,8)$
$(1,7)(2,3)(4,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,7)(2,3)(4,5)(6,8)$$-1$
$1$$4$$(1,2,7,3)(4,8,5,6)$$\zeta_{8}^{2}$
$1$$4$$(1,3,7,2)(4,6,5,8)$$-\zeta_{8}^{2}$
$1$$8$$(1,5,2,6,7,4,3,8)$$-\zeta_{8}$
$1$$8$$(1,6,3,5,7,8,2,4)$$-\zeta_{8}^{3}$
$1$$8$$(1,4,2,8,7,5,3,6)$$\zeta_{8}$
$1$$8$$(1,8,3,4,7,6,2,5)$$\zeta_{8}^{3}$
The blue line marks the conjugacy class containing complex conjugation.