Properties

Label 1.17_31.6t1.2c1
Dimension 1
Group $C_6$
Conductor $ 17 \cdot 31 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$527= 17 \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 127 x^{4} - 259 x^{3} + 4880 x^{2} - 4748 x + 42688 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{527}(305,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{2} + 82 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ a + 25 + \left(55 a + 39\right)\cdot 89 + \left(67 a + 78\right)\cdot 89^{2} + \left(3 a + 72\right)\cdot 89^{3} + 38\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 88 a + 32 + \left(33 a + 67\right)\cdot 89 + \left(21 a + 51\right)\cdot 89^{2} + \left(85 a + 31\right)\cdot 89^{3} + \left(88 a + 35\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 81 + \left(56 a + 49\right)\cdot 89 + \left(82 a + 17\right)\cdot 89^{2} + \left(73 a + 12\right)\cdot 89^{3} + \left(20 a + 61\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 50 a + 43 + \left(13 a + 88\right)\cdot 89 + \left(84 a + 35\right)\cdot 89^{2} + \left(23 a + 32\right)\cdot 89^{3} + \left(65 a + 5\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 68 a + 50 + \left(32 a + 66\right)\cdot 89 + \left(6 a + 5\right)\cdot 89^{2} + \left(15 a + 2\right)\cdot 89^{3} + \left(68 a + 44\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 39 a + 37 + \left(75 a + 44\right)\cdot 89 + \left(4 a + 77\right)\cdot 89^{2} + \left(65 a + 26\right)\cdot 89^{3} + \left(23 a + 82\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,3,6,2,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)(3,5)(4,6)$$-1$
$1$$3$$(1,6,5)(2,4,3)$$\zeta_{3}$
$1$$3$$(1,5,6)(2,3,4)$$-\zeta_{3} - 1$
$1$$6$$(1,3,6,2,5,4)$$\zeta_{3} + 1$
$1$$6$$(1,4,5,2,6,3)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.