Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 17 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 + 6\cdot 17 + 13\cdot 17^{2} + 13\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 10 + 10\cdot 17 + 3\cdot 17^{2} + 16\cdot 17^{3} + 3\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
Generators of the action on the roots
$ r_{ 1 }, r_{ 2 } $
Character values on conjugacy classes
| Size | Order | Action on
$ r_{ 1 }, r_{ 2 } $
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$1$ |
| $1$ |
$2$ |
$(1,2)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.