Properties

Label 1.171.6t1.d.a
Dimension $1$
Group $C_6$
Conductor $171$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(171\)\(\medspace = 3^{2} \cdot 19 \)
Artin field: Galois closure of 6.6.48737056617.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: even
Dirichlet character: \(\chi_{171}(50,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - 57x^{4} - 95x^{3} + 684x^{2} + 1596x - 152 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: \( x^{2} + 33x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 19 a + 21 + 30\cdot 37 + \left(7 a + 6\right)\cdot 37^{2} + \left(22 a + 4\right)\cdot 37^{3} + \left(27 a + 10\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 28 a + 14 + \left(26 a + 24\right)\cdot 37 + \left(4 a + 28\right)\cdot 37^{2} + \left(27 a + 2\right)\cdot 37^{3} + \left(30 a + 36\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 18 a + 23 + \left(36 a + 13\right)\cdot 37 + \left(29 a + 34\right)\cdot 37^{2} + \left(14 a + 11\right)\cdot 37^{3} + \left(9 a + 24\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 9 a + 15 + \left(10 a + 29\right)\cdot 37 + \left(32 a + 20\right)\cdot 37^{2} + \left(9 a + 32\right)\cdot 37^{3} + \left(6 a + 20\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 28 a + \left(10 a + 36\right)\cdot 37 + \left(2 a + 10\right)\cdot 37^{2} + \left(32 a + 22\right)\cdot 37^{3} + \left(33 a + 13\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 9 a + 1 + \left(26 a + 14\right)\cdot 37 + \left(34 a + 9\right)\cdot 37^{2} + 4 a\cdot 37^{3} + \left(3 a + 6\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2,6,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)(5,6)$$-1$
$1$$3$$(1,6,4)(2,3,5)$$\zeta_{3}$
$1$$3$$(1,4,6)(2,5,3)$$-\zeta_{3} - 1$
$1$$6$$(1,2,6,3,4,5)$$\zeta_{3} + 1$
$1$$6$$(1,5,4,3,6,2)$$-\zeta_{3}$

The blue line marks the conjugacy class containing complex conjugation.