Properties

Label 1.17.4t1.a.b
Dimension $1$
Group $C_4$
Conductor $17$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_4$
Conductor: \(17\)
Artin field: Galois closure of 4.4.4913.1
Galois orbit size: $2$
Smallest permutation container: $C_4$
Parity: even
Dirichlet character: \(\chi_{17}(13,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} - 6x^{2} + x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 13 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 2 + 4\cdot 13 + 3\cdot 13^{2} + 3\cdot 13^{3} + 9\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 6 + 7\cdot 13 + 8\cdot 13^{2} + 13^{3} + 4\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 9 + 6\cdot 13 + 2\cdot 13^{3} + 5\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 10 + 7\cdot 13 + 6\cdot 13^{3} + 7\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)(3,4)$$-1$
$1$$4$$(1,3,2,4)$$-\zeta_{4}$
$1$$4$$(1,4,2,3)$$\zeta_{4}$

The blue line marks the conjugacy class containing complex conjugation.