Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ a^{2} + 9 a + 2 + \left(10 a^{2} + 3 a + 8\right)\cdot 13 + \left(10 a^{2} + 12 a + 12\right)\cdot 13^{2} + \left(3 a^{2} + 1\right)\cdot 13^{3} + \left(10 a^{2} + 7 a + 3\right)\cdot 13^{4} + \left(7 a + 12\right)\cdot 13^{5} + \left(3 a^{2} + 5 a + 3\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 a^{2} + 12 a + 1 + \left(a^{2} + 12 a + 6\right)\cdot 13 + \left(12 a^{2} + 9 a + 5\right)\cdot 13^{2} + \left(3 a^{2} + 5 a + 11\right)\cdot 13^{3} + \left(4 a^{2} + 4 a + 6\right)\cdot 13^{4} + \left(3 a^{2} + 3 a + 11\right)\cdot 13^{5} + \left(12 a^{2} + 11 a + 3\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 10 a^{2} + 6 a + \left(11 a^{2} + a + 8\right)\cdot 13 + \left(5 a^{2} + 11\right)\cdot 13^{2} + \left(7 a^{2} + 4 a + 6\right)\cdot 13^{3} + \left(a^{2} + 8 a + 11\right)\cdot 13^{4} + \left(7 a^{2} + 2 a + 12\right)\cdot 13^{5} + \left(10 a^{2} + 4\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ a^{2} + a + 1 + \left(2 a^{2} + 2 a + 8\right)\cdot 13 + \left(6 a^{2} + a + 7\right)\cdot 13^{2} + \left(8 a^{2} + 8 a + 12\right)\cdot 13^{3} + \left(10 a^{2} + 1\right)\cdot 13^{4} + \left(4 a^{2} + 10 a + 1\right)\cdot 13^{5} + 6 a\cdot 13^{6} +O\left(13^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 11 a^{2} + 10 a + 11 + \left(9 a + 8\right)\cdot 13 + \left(5 a^{2} + 9 a\right)\cdot 13^{2} + \left(10 a^{2} + 11 a + 2\right)\cdot 13^{3} + \left(a^{2} + 7 a + 9\right)\cdot 13^{4} + \left(5 a + 2\right)\cdot 13^{5} + \left(3 a^{2} + 8\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 2 a^{2} + 2 a + 7 + \left(2 a^{2} + 11 a + 11\right)\cdot 13 + \left(11 a^{2} + 3 a + 12\right)\cdot 13^{2} + \left(a^{2} + 4 a + 12\right)\cdot 13^{3} + \left(10 a^{2} + 2 a + 5\right)\cdot 13^{4} + \left(9 a^{2} + 12 a + 11\right)\cdot 13^{5} + \left(7 a^{2} + 6 a + 10\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ a^{2} + 7 a + 2 + \left(2 a^{2} + 12 a + 6\right)\cdot 13 + \left(10 a^{2} + 3 a + 7\right)\cdot 13^{2} + \left(11 a^{2} + 12\right)\cdot 13^{3} + \left(11 a + 7\right)\cdot 13^{4} + \left(12 a^{2} + 12 a + 5\right)\cdot 13^{5} + \left(6 a^{2} + 6 a\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 7 a^{2} + 12 a + 5 + \left(9 a^{2} + a + 8\right)\cdot 13 + \left(2 a^{2} + 12 a + 1\right)\cdot 13^{2} + \left(7 a^{2} + 2 a + 7\right)\cdot 13^{3} + \left(11 a^{2} + 6 a + 3\right)\cdot 13^{4} + \left(12 a^{2} + 10 a + 11\right)\cdot 13^{5} + \left(5 a^{2} + 7 a + 12\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ 2 a^{2} + 6 a + 11 + \left(12 a^{2} + 9 a + 12\right)\cdot 13 + \left(11 a + 4\right)\cdot 13^{2} + \left(10 a^{2} + 10\right)\cdot 13^{3} + \left(4 a + 1\right)\cdot 13^{4} + \left(a^{2} + 9\right)\cdot 13^{5} + \left(2 a^{2} + 6 a + 6\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 9 }$
| Cycle notation |
| $(1,2,4,7,8,9,5,6,3)$ |
| $(1,7,5)(2,8,6)(3,4,9)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 9 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $3$ | $(1,7,5)(2,8,6)(3,4,9)$ | $\zeta_{9}^{3}$ |
| $1$ | $3$ | $(1,5,7)(2,6,8)(3,9,4)$ | $-\zeta_{9}^{3} - 1$ |
| $1$ | $9$ | $(1,2,4,7,8,9,5,6,3)$ | $\zeta_{9}^{4}$ |
| $1$ | $9$ | $(1,4,8,5,3,2,7,9,6)$ | $-\zeta_{9}^{5} - \zeta_{9}^{2}$ |
| $1$ | $9$ | $(1,8,3,7,6,4,5,2,9)$ | $-\zeta_{9}^{4} - \zeta_{9}$ |
| $1$ | $9$ | $(1,9,2,5,4,6,7,3,8)$ | $\zeta_{9}^{2}$ |
| $1$ | $9$ | $(1,6,9,7,2,3,5,8,4)$ | $\zeta_{9}$ |
| $1$ | $9$ | $(1,3,6,5,9,8,7,4,2)$ | $\zeta_{9}^{5}$ |
The blue line marks the conjugacy class containing complex conjugation.