Basic invariants
| Dimension: | $1$ |
| Group: | $C_4$ |
| Conductor: | \(155\)\(\medspace = 5 \cdot 31 \) |
| Artin field: | Galois closure of 4.4.120125.1 |
| Galois orbit size: | $2$ |
| Smallest permutation container: | $C_4$ |
| Parity: | even |
| Dirichlet character: | \(\chi_{155}(123,\cdot)\) |
| Projective image: | $C_1$ |
| Projective field: | Galois closure of \(\Q\) |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{4} - x^{3} - 39x^{2} + 39x + 281 \)
|
The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 10 + 4\cdot 29 + 21\cdot 29^{2} + 9\cdot 29^{3} + 22\cdot 29^{4} +O(29^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 13 + 21\cdot 29 + 28\cdot 29^{2} + 20\cdot 29^{3} + 19\cdot 29^{4} +O(29^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 14 + 3\cdot 29 + 3\cdot 29^{2} + 20\cdot 29^{3} + 20\cdot 29^{4} +O(29^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 22 + 28\cdot 29 + 4\cdot 29^{2} + 7\cdot 29^{3} + 24\cdot 29^{4} +O(29^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $1$ | ✓ |
| $1$ | $2$ | $(1,3)(2,4)$ | $-1$ | |
| $1$ | $4$ | $(1,2,3,4)$ | $\zeta_{4}$ | |
| $1$ | $4$ | $(1,4,3,2)$ | $-\zeta_{4}$ |