Basic invariants
Dimension: | $1$ |
Group: | $C_6$ |
Conductor: | \(152\)\(\medspace = 2^{3} \cdot 19 \) |
Artin field: | Galois closure of 6.0.66724352.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6$ |
Parity: | odd |
Dirichlet character: | \(\chi_{152}(83,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{6} - 2x^{5} - 5x^{4} + 18x^{3} + 38x^{2} - 152x + 209 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: \( x^{2} + 6x + 3 \)
Roots:
$r_{ 1 }$ | $=$ | \( 3 a + 6 a\cdot 7 + 4 a\cdot 7^{2} + \left(6 a + 5\right)\cdot 7^{3} + \left(a + 1\right)\cdot 7^{4} +O(7^{5})\) |
$r_{ 2 }$ | $=$ | \( 3 a + 5 + \left(6 a + 4\right)\cdot 7 + \left(4 a + 1\right)\cdot 7^{2} + \left(6 a + 6\right)\cdot 7^{3} + \left(a + 3\right)\cdot 7^{4} +O(7^{5})\) |
$r_{ 3 }$ | $=$ | \( 4 a + 3 + 3\cdot 7 + \left(2 a + 5\right)\cdot 7^{2} + 6\cdot 7^{3} + \left(5 a + 3\right)\cdot 7^{4} +O(7^{5})\) |
$r_{ 4 }$ | $=$ | \( 4 a + 5 + \left(2 a + 6\right)\cdot 7^{2} + 7^{3} + 5 a\cdot 7^{4} +O(7^{5})\) |
$r_{ 5 }$ | $=$ | \( 4 a + 1 + 7 + 2 a\cdot 7^{2} + 7^{3} + \left(5 a + 6\right)\cdot 7^{4} +O(7^{5})\) |
$r_{ 6 }$ | $=$ | \( 3 a + 2 + \left(6 a + 4\right)\cdot 7 + 4 a\cdot 7^{2} + 6 a\cdot 7^{3} + \left(a + 5\right)\cdot 7^{4} +O(7^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $1$ |
$1$ | $2$ | $(1,3)(2,5)(4,6)$ | $-1$ |
$1$ | $3$ | $(1,6,2)(3,4,5)$ | $\zeta_{3}$ |
$1$ | $3$ | $(1,2,6)(3,5,4)$ | $-\zeta_{3} - 1$ |
$1$ | $6$ | $(1,4,2,3,6,5)$ | $-\zeta_{3}$ |
$1$ | $6$ | $(1,5,6,3,2,4)$ | $\zeta_{3} + 1$ |
The blue line marks the conjugacy class containing complex conjugation.