Properties

Label 1.151.5t1.1c2
Dimension 1
Group $C_5$
Conductor $ 151 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$151 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 60 x^{3} + 12 x^{2} + 784 x - 128 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even
Corresponding Dirichlet character: \(\chi_{151}(59,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 1 + 3\cdot 19 + 13\cdot 19^{2} + 11\cdot 19^{3} + 12\cdot 19^{4} + 11\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 3 + 18\cdot 19 + 18\cdot 19^{2} + 15\cdot 19^{3} + 18\cdot 19^{4} + 5\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 8 + 16\cdot 19 + 11\cdot 19^{2} + 13\cdot 19^{3} + 17\cdot 19^{4} + 18\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 10 + 9\cdot 19 + 19^{2} + 4\cdot 19^{3} + 2\cdot 19^{4} + 7\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 17 + 9\cdot 19 + 11\cdot 19^{2} + 11\cdot 19^{3} + 5\cdot 19^{4} + 13\cdot 19^{5} +O\left(19^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3,4,5,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$1$
$1$$5$$(1,3,4,5,2)$$\zeta_{5}^{2}$
$1$$5$$(1,4,2,3,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,5,3,2,4)$$\zeta_{5}$
$1$$5$$(1,2,5,4,3)$$\zeta_{5}^{3}$
The blue line marks the conjugacy class containing complex conjugation.