Basic invariants
Dimension: | $1$ |
Group: | $C_4$ |
Conductor: | \(1480\)\(\medspace = 2^{3} \cdot 5 \cdot 37 \) |
Artin number field: | Galois closure of 4.4.10952000.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_4$ |
Parity: | even |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 11 }$ to precision 8.
Roots:
$r_{ 1 }$ | $=$ |
\( 2 + 5\cdot 11 + 2\cdot 11^{2} + 9\cdot 11^{3} + 4\cdot 11^{4} + 2\cdot 11^{5} +O(11^{8})\)
$r_{ 2 }$ |
$=$ |
\( 5 + 10\cdot 11^{2} + 2\cdot 11^{3} + 9\cdot 11^{4} + 9\cdot 11^{5} + 4\cdot 11^{6} + 10\cdot 11^{7} +O(11^{8})\)
| $r_{ 3 }$ |
$=$ |
\( 6 + 10\cdot 11 + 8\cdot 11^{3} + 11^{4} + 11^{5} + 6\cdot 11^{6} +O(11^{8})\)
| $r_{ 4 }$ |
$=$ |
\( 9 + 5\cdot 11 + 8\cdot 11^{2} + 11^{3} + 6\cdot 11^{4} + 8\cdot 11^{5} + 10\cdot 11^{6} + 10\cdot 11^{7} +O(11^{8})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character values | |
$c1$ | $c2$ | |||
$1$ | $1$ | $()$ | $1$ | $1$ |
$1$ | $2$ | $(1,4)(2,3)$ | $-1$ | $-1$ |
$1$ | $4$ | $(1,3,4,2)$ | $\zeta_{4}$ | $-\zeta_{4}$ |
$1$ | $4$ | $(1,2,4,3)$ | $-\zeta_{4}$ | $\zeta_{4}$ |