Basic invariants
Dimension: | $1$ |
Group: | $C_{14}$ |
Conductor: | \(147\)\(\medspace = 3 \cdot 7^{2} \) |
Artin field: | Galois closure of 14.0.418988153029298748294987.1 |
Galois orbit size: | $6$ |
Smallest permutation container: | $C_{14}$ |
Parity: | odd |
Dirichlet character: | \(\chi_{147}(71,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{14} + 21 x^{12} - 42 x^{11} + 350 x^{10} - 553 x^{9} + 2184 x^{8} - 2696 x^{7} + 8869 x^{6} + \cdots + 9409 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$:
\( x^{7} + 7x + 35 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 4 a^{6} + 34 a^{5} + 36 a^{3} + 5 a^{2} + 2 a + 24 + \left(15 a^{6} + 23 a^{5} + 25 a^{4} + 9 a^{3} + 4 a^{2} + 30 a + 16\right)\cdot 37 + \left(12 a^{6} + 21 a^{5} + 9 a^{4} + 10 a^{3} + 33 a^{2} + 15 a\right)\cdot 37^{2} + \left(35 a^{6} + 16 a^{5} + 28 a^{4} + 7 a^{3} + 13 a^{2} + 2 a + 27\right)\cdot 37^{3} + \left(10 a^{6} + 27 a^{5} + 12 a^{3} + 31 a^{2} + 27 a + 28\right)\cdot 37^{4} + \left(12 a^{6} + 27 a^{5} + 21 a^{4} + 21 a^{3} + 23 a^{2} + 36\right)\cdot 37^{5} + \left(8 a^{6} + 6 a^{5} + 27 a^{4} + 4 a^{3} + 15 a^{2} + 5 a + 12\right)\cdot 37^{6} + \left(2 a^{6} + 36 a^{5} + 31 a^{4} + 4 a^{3} + 9 a^{2} + 9 a + 13\right)\cdot 37^{7} + \left(34 a^{6} + 3 a^{5} + 6 a^{4} + 4 a^{3} + 28 a^{2} + 11 a + 19\right)\cdot 37^{8} +O(37^{9})\)
|
$r_{ 2 }$ | $=$ |
\( 6 a^{6} + 11 a^{5} + 31 a^{4} + 31 a^{3} + 4 a + 36 + \left(31 a^{6} + 32 a^{5} + 21 a^{4} + 22 a^{3} + 30 a^{2} + 2 a + 1\right)\cdot 37 + \left(17 a^{6} + a^{5} + 35 a^{4} + 6 a^{3} + 33 a^{2} + 32 a + 33\right)\cdot 37^{2} + \left(6 a^{6} + 16 a^{5} + 5 a^{4} + 20 a^{3} + a^{2} + 31 a + 1\right)\cdot 37^{3} + \left(30 a^{6} + 36 a^{5} + 20 a^{4} + 12 a^{3} + 4 a^{2} + 34 a + 33\right)\cdot 37^{4} + \left(21 a^{6} + 31 a^{5} + 21 a^{4} + 34 a^{3} + 12 a^{2} + 20 a + 19\right)\cdot 37^{5} + \left(20 a^{6} + 4 a^{5} + 19 a^{4} + 36 a^{3} + 5 a^{2} + 2 a + 12\right)\cdot 37^{6} + \left(5 a^{6} + 28 a^{5} + 13 a^{4} + 3 a^{3} + 13 a^{2} + 27 a + 33\right)\cdot 37^{7} + \left(26 a^{6} + 21 a^{5} + 15 a^{4} + 33 a^{3} + 29 a^{2} + 30 a + 8\right)\cdot 37^{8} +O(37^{9})\)
|
$r_{ 3 }$ | $=$ |
\( 6 a^{6} + 34 a^{5} + 21 a^{4} + 21 a^{3} + 10 a + 36 + \left(21 a^{6} + 8 a^{5} + 12 a^{4} + 36 a^{3} + 15 a^{2} + 25 a + 15\right)\cdot 37 + \left(17 a^{6} + 13 a^{5} + 35 a^{4} + 30 a^{3} + 7 a^{2} + 11 a + 31\right)\cdot 37^{2} + \left(16 a^{6} + a^{5} + 5 a^{4} + 32 a^{3} + 23 a^{2} + 3 a + 24\right)\cdot 37^{3} + \left(36 a^{6} + 10 a^{5} + 17 a^{4} + 14 a^{3} + 26 a^{2} + 18 a + 33\right)\cdot 37^{4} + \left(a^{6} + 32 a^{5} + 24 a^{4} + 3 a^{3} + 11 a^{2} + 11 a + 11\right)\cdot 37^{5} + \left(23 a^{6} + 19 a^{5} + 12 a^{4} + 34 a^{3} + 21 a^{2} + 27 a + 27\right)\cdot 37^{6} + \left(4 a^{6} + 20 a^{5} + 16 a^{4} + 26 a^{3} + 6 a^{2} + 27 a + 27\right)\cdot 37^{7} + \left(30 a^{6} + 32 a^{5} + 17 a^{4} + 4 a^{3} + 9 a^{2} + 25 a + 32\right)\cdot 37^{8} +O(37^{9})\)
|
$r_{ 4 }$ | $=$ |
\( 9 a^{6} + 30 a^{5} + 28 a^{4} + 33 a^{3} + 23 a^{2} + 29 a + 17 + \left(a^{5} + 33 a^{4} + 15 a^{3} + 18 a^{2} + 11 a + 1\right)\cdot 37 + \left(9 a^{6} + 16 a^{5} + 36 a^{4} + 26 a^{3} + 21 a^{2} + 29 a + 17\right)\cdot 37^{2} + \left(7 a^{6} + 24 a^{5} + 8 a^{4} + 6 a^{3} + 16 a^{2} + 30 a + 6\right)\cdot 37^{3} + \left(6 a^{6} + 14 a^{5} + 8 a^{4} + 9 a^{3} + 6 a^{2} + 25 a\right)\cdot 37^{4} + \left(18 a^{6} + 26 a^{5} + 21 a^{4} + 24 a^{3} + 26 a^{2} + 12 a + 35\right)\cdot 37^{5} + \left(36 a^{5} + 27 a^{4} + 2 a^{3} + 2 a^{2} + 24 a + 2\right)\cdot 37^{6} + \left(15 a^{6} + 22 a^{5} + 7 a^{4} + 12 a^{3} + 29 a^{2} + 22 a + 16\right)\cdot 37^{7} + \left(7 a^{6} + 8 a^{5} + 9 a^{4} + 4 a^{3} + 12 a^{2} + 22 a + 7\right)\cdot 37^{8} +O(37^{9})\)
|
$r_{ 5 }$ | $=$ |
\( 9 a^{6} + 33 a^{5} + 18 a^{4} + 16 a^{3} + 13 a^{2} + 31 a + 17 + \left(32 a^{6} + 8 a^{5} + 31 a^{4} + 7 a^{3} + 23 a^{2} + 10 a + 8\right)\cdot 37 + \left(36 a^{6} + 7 a^{5} + 28 a^{4} + 18 a^{3} + 12 a^{2} + 19 a + 36\right)\cdot 37^{2} + \left(32 a^{6} + 16 a^{4} + 5 a^{3} + 36 a^{2} + 12\right)\cdot 37^{3} + \left(10 a^{6} + 9 a^{5} + 34 a^{4} + 13 a^{3} + 31 a^{2} + 8 a + 28\right)\cdot 37^{4} + \left(34 a^{6} + 28 a^{5} + 36 a^{4} + 15 a^{3} + 26 a^{2} + 10 a + 20\right)\cdot 37^{5} + \left(2 a^{6} + 28 a^{5} + 6 a^{4} + 28 a^{3} + 8 a^{2} + 11 a + 17\right)\cdot 37^{6} + \left(23 a^{6} + a^{5} + 34 a^{4} + 7 a^{3} + 19 a^{2} + 9 a + 27\right)\cdot 37^{7} + \left(9 a^{6} + 14 a^{5} + 22 a^{4} + 4 a^{3} + 18 a^{2} + 30 a + 20\right)\cdot 37^{8} +O(37^{9})\)
|
$r_{ 6 }$ | $=$ |
\( 12 a^{6} + 7 a^{5} + 24 a^{4} + 9 a^{3} + 5 a^{2} + 29 a + 35 + \left(11 a^{6} + 23 a^{5} + 15 a^{4} + 26 a^{3} + 25 a^{2} + 6 a + 30\right)\cdot 37 + \left(15 a^{6} + 22 a^{5} + 33 a^{4} + 4 a^{3} + 31 a^{2} + 12 a + 17\right)\cdot 37^{2} + \left(10 a^{6} + 14 a^{5} + 31 a^{4} + 21 a^{3} + 17 a^{2} + 18 a + 25\right)\cdot 37^{3} + \left(17 a^{6} + 32 a^{5} + 30 a^{4} + 35 a^{3} + 21 a^{2} + 5 a + 29\right)\cdot 37^{4} + \left(a^{6} + 17 a^{5} + 15 a^{4} + 16 a^{3} + 27 a^{2} + 30 a + 8\right)\cdot 37^{5} + \left(23 a^{6} + 4 a^{5} + 12 a^{4} + 27 a^{3} + 28 a^{2} + 8 a + 27\right)\cdot 37^{6} + \left(28 a^{6} + 17 a^{5} + 21 a^{4} + a^{3} + 16 a^{2} + 26 a + 23\right)\cdot 37^{7} + \left(7 a^{6} + 3 a^{5} + 6 a^{4} + 28 a^{3} + 4 a^{2} + 16 a + 9\right)\cdot 37^{8} +O(37^{9})\)
|
$r_{ 7 }$ | $=$ |
\( 14 a^{6} + 21 a^{5} + 11 a^{4} + 22 a^{3} + 30 a^{2} + 30 a + 10 + \left(29 a^{6} + 19 a^{5} + 15 a^{4} + 30 a^{3} + 22 a^{2} + 34 a + 28\right)\cdot 37 + \left(12 a^{5} + 24 a^{4} + 36 a^{3} + 28 a^{2} + 25 a + 4\right)\cdot 37^{2} + \left(22 a^{6} + 30 a^{5} + 22 a^{4} + 11 a^{3} + 31 a^{2} + 6 a + 21\right)\cdot 37^{3} + \left(15 a^{6} + 9 a^{5} + 27 a^{4} + 26 a^{3} + 11 a^{2} + 29 a + 19\right)\cdot 37^{4} + \left(5 a^{6} + 31 a^{5} + 7 a^{4} + 32 a^{3} + 28 a^{2} + 13 a + 32\right)\cdot 37^{5} + \left(9 a^{6} + 32 a^{5} + 7 a^{4} + 32 a^{3} + 3 a^{2} + 8 a + 17\right)\cdot 37^{6} + \left(31 a^{6} + 27 a^{5} + 24 a^{4} + 2 a^{3} + 31 a^{2} + 19 a + 2\right)\cdot 37^{7} + \left(11 a^{6} + 23 a^{5} + 22 a^{4} + 19 a^{3} + 36 a^{2} + a + 34\right)\cdot 37^{8} +O(37^{9})\)
|
$r_{ 8 }$ | $=$ |
\( 16 a^{6} + 4 a^{5} + 21 a^{4} + 34 a^{3} + 8 a^{2} + 31 a + 22 + \left(6 a^{6} + 19 a^{5} + 3 a^{2} + 23 a + 1\right)\cdot 37 + \left(33 a^{6} + 16 a^{5} + 30 a^{4} + 13 a^{3} + 20 a^{2} + 36 a + 14\right)\cdot 37^{2} + \left(20 a^{6} + 2 a^{5} + 28 a^{4} + 6 a^{3} + 34 a^{2} + 22 a + 14\right)\cdot 37^{3} + \left(10 a^{6} + 14 a^{5} + 36 a^{4} + a^{3} + 12 a^{2} + 12 a + 26\right)\cdot 37^{4} + \left(12 a^{6} + 19 a^{5} + 6 a^{4} + 31 a^{3} + 27 a^{2} + 33 a + 36\right)\cdot 37^{5} + \left(13 a^{6} + 12 a^{5} + 36 a^{4} + 31 a^{3} + 18 a^{2} + 33 a + 5\right)\cdot 37^{6} + \left(26 a^{6} + 18 a^{5} + 6 a^{4} + 34 a^{3} + 13 a^{2} + 31 a + 10\right)\cdot 37^{7} + \left(29 a^{6} + 4 a^{5} + 3 a^{4} + 22 a^{3} + 29 a^{2} + 32 a + 30\right)\cdot 37^{8} +O(37^{9})\)
|
$r_{ 9 }$ | $=$ |
\( 17 a^{6} + 5 a^{5} + 17 a^{4} + 26 a^{3} + 24 a^{2} + 21 a + 28 + \left(26 a^{6} + 13 a^{5} + 35 a^{4} + 8 a^{3} + 17 a^{2} + 7 a + 10\right)\cdot 37 + \left(7 a^{6} + a^{5} + 33 a^{4} + 34 a^{3} + 25 a^{2} + 15 a + 9\right)\cdot 37^{2} + \left(13 a^{6} + a^{5} + 3 a^{4} + 19 a^{3} + 19 a^{2} + 7 a + 5\right)\cdot 37^{3} + \left(20 a^{6} + 28 a^{5} + 20 a^{4} + a^{3} + 18 a^{2} + 20 a + 11\right)\cdot 37^{4} + \left(26 a^{6} + 26 a^{5} + 27 a^{4} + 21 a^{3} + 11 a^{2} + 25 a + 11\right)\cdot 37^{5} + \left(26 a^{6} + 33 a^{5} + 14 a^{4} + 10 a^{3} + 15 a^{2} + 5 a + 12\right)\cdot 37^{6} + \left(33 a^{6} + 4 a^{5} + 7 a^{4} + 32 a^{2} + 12 a + 17\right)\cdot 37^{7} + \left(32 a^{6} + 11 a^{5} + 12 a^{4} + 10 a^{3} + 6 a^{2} + 14 a + 12\right)\cdot 37^{8} +O(37^{9})\)
|
$r_{ 10 }$ | $=$ |
\( 22 a^{6} + 13 a^{5} + 22 a^{4} + a^{3} + 18 a^{2} + 25 a + 21 + \left(29 a^{6} + 14 a^{5} + 8 a^{4} + 4 a^{3} + 14 a^{2} + 35 a + 29\right)\cdot 37 + \left(a^{6} + 12 a^{5} + 9 a^{4} + 17 a^{3} + 28 a^{2} + 5 a + 10\right)\cdot 37^{2} + \left(18 a^{6} + 29 a^{5} + 7 a^{4} + 7 a^{3} + a^{2} + 26 a + 34\right)\cdot 37^{3} + \left(12 a^{5} + 16 a^{4} + 33 a^{3} + 18 a^{2} + 24 a + 2\right)\cdot 37^{4} + \left(13 a^{6} + 3 a^{5} + 14 a^{4} + 24 a^{2} + 14 a + 4\right)\cdot 37^{5} + \left(2 a^{6} + 9 a^{5} + 6 a^{4} + 21 a^{3} + 13 a^{2} + 9 a + 14\right)\cdot 37^{6} + \left(12 a^{6} + 21 a^{5} + 30 a^{4} + 11 a^{3} + 27 a^{2} + 15 a + 35\right)\cdot 37^{7} + \left(13 a^{6} + 25 a^{5} + 21 a^{4} + 18 a^{3} + 6 a^{2} + 8 a + 5\right)\cdot 37^{8} +O(37^{9})\)
|
$r_{ 11 }$ | $=$ |
\( 23 a^{6} + 7 a^{5} + 25 a^{4} + 25 a^{3} + 26 a + 27 + \left(4 a^{6} + 26 a^{5} + 11 a^{4} + 29 a^{3} + 2 a^{2} + 18 a + 27\right)\cdot 37 + \left(36 a^{6} + 19 a^{5} + 16 a^{4} + 32 a^{3} + 19 a^{2} + 19 a + 31\right)\cdot 37^{2} + \left(18 a^{6} + a^{5} + 9 a^{4} + 33 a^{3} + 11 a + 2\right)\cdot 37^{3} + \left(15 a^{6} + 2 a^{5} + 25 a^{4} + 4 a^{3} + 4 a^{2} + 27 a + 19\right)\cdot 37^{4} + \left(17 a^{6} + 19 a^{5} + 18 a^{4} + 13 a^{3} + 29 a^{2} + 16 a + 30\right)\cdot 37^{5} + \left(24 a^{6} + 25 a^{5} + 23 a^{4} + 2 a^{3} + 8 a^{2} + 34 a + 35\right)\cdot 37^{6} + \left(7 a^{6} + 17 a^{5} + 18 a^{4} + 29 a^{3} + 24 a^{2} + 11 a + 8\right)\cdot 37^{7} + \left(25 a^{6} + 22 a^{5} + 6 a^{4} + 25 a^{3} + 3 a^{2} + 7 a + 3\right)\cdot 37^{8} +O(37^{9})\)
|
$r_{ 12 }$ | $=$ |
\( 23 a^{6} + 36 a^{5} + 14 a^{4} + 14 a^{3} + 3 a + 27 + \left(30 a^{6} + 35 a^{5} + 18 a^{4} + 28 a^{3} + 4 a^{2} + 31 a + 35\right)\cdot 37 + \left(26 a^{6} + 20 a^{5} + 29 a^{4} + 19 a^{3} + 6 a^{2} + 24 a + 12\right)\cdot 37^{2} + \left(36 a^{6} + 30 a^{5} + 34 a^{4} + a^{3} + 29 a^{2} + 3 a + 35\right)\cdot 37^{3} + \left(9 a^{6} + 35 a^{5} + 6 a^{4} + 20 a^{3} + 19 a + 22\right)\cdot 37^{4} + \left(16 a^{6} + 18 a^{5} + 5 a^{4} + 33 a^{3} + 25 a^{2} + 21 a + 23\right)\cdot 37^{5} + \left(13 a^{6} + 32 a^{5} + 3 a^{4} + 26 a^{3} + 4 a^{2} + 8 a + 6\right)\cdot 37^{6} + \left(8 a^{6} + 24 a^{5} + 2 a^{4} + 20 a^{3} + 23 a^{2} + 14 a + 13\right)\cdot 37^{7} + \left(24 a^{6} + 16 a^{5} + 27 a^{4} + 16 a^{3} + 24 a^{2} + 19 a + 34\right)\cdot 37^{8} +O(37^{9})\)
|
$r_{ 13 }$ | $=$ |
\( 30 a^{6} + 33 a^{5} + 11 a^{3} + 19 a^{2} + 15 a + 32 + \left(8 a^{6} + 21 a^{5} + 21 a^{4} + 22 a^{3} + 34 a^{2} + 34 a + 15\right)\cdot 37 + \left(34 a^{6} + 3 a^{5} + 34 a^{4} + 36 a^{3} + 10 a^{2} + 30 a + 20\right)\cdot 37^{2} + \left(3 a^{5} + 19 a^{4} + 25 a^{3} + 24 a^{2} + 28 a + 5\right)\cdot 37^{3} + \left(13 a^{6} + 15 a^{5} + 13 a^{4} + 22 a^{2} + 12 a + 4\right)\cdot 37^{4} + \left(13 a^{6} + 17 a^{5} + 24 a^{4} + 17 a^{3} + 29 a^{2} + 18 a + 6\right)\cdot 37^{5} + \left(20 a^{6} + 18 a^{5} + 4 a^{4} + 17 a^{3} + 35 a^{2} + 15 a + 11\right)\cdot 37^{6} + \left(30 a^{6} + 30 a^{5} + a^{4} + 19 a^{3} + 23 a^{2} + 35\right)\cdot 37^{7} + \left(26 a^{6} + 4 a^{5} + 25 a^{4} + 6 a^{3} + 36 a^{2} + 25 a + 12\right)\cdot 37^{8} +O(37^{9})\)
|
$r_{ 14 }$ | $=$ |
\( 31 a^{6} + 28 a^{5} + 27 a^{4} + 17 a^{3} + 3 a^{2} + 3 a + 1 + \left(11 a^{6} + 9 a^{5} + 7 a^{4} + 15 a^{3} + 7 a^{2} + 23 a + 34\right)\cdot 37 + \left(9 a^{6} + 15 a^{5} + 12 a^{4} + 8 a^{3} + 17 a^{2} + 16 a + 18\right)\cdot 37^{2} + \left(19 a^{6} + 13 a^{5} + 34 a^{4} + 21 a^{3} + 7 a^{2} + 27 a + 4\right)\cdot 37^{3} + \left(24 a^{6} + 11 a^{5} + 36 a^{3} + 11 a^{2} + 30 a + 36\right)\cdot 37^{4} + \left(27 a^{6} + 32 a^{5} + 13 a^{4} + 30 a^{3} + 29 a^{2} + 28 a + 17\right)\cdot 37^{5} + \left(33 a^{6} + 29 a^{5} + 19 a^{4} + 18 a^{3} + a^{2} + 26 a + 17\right)\cdot 37^{6} + \left(29 a^{6} + 23 a^{5} + 6 a^{4} + 9 a^{3} + 26 a^{2} + 31 a + 31\right)\cdot 37^{7} + \left(16 a^{6} + 28 a^{5} + 25 a^{4} + 24 a^{3} + 11 a^{2} + 12 a + 26\right)\cdot 37^{8} +O(37^{9})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 14 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 14 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $1$ | |
$1$ | $2$ | $(1,13)(2,12)(3,11)(4,8)(5,6)(7,14)(9,10)$ | $-1$ | ✓ |
$1$ | $7$ | $(1,11,12,7,10,5,8)(2,14,9,6,4,13,3)$ | $\zeta_{7}^{4}$ | |
$1$ | $7$ | $(1,12,10,8,11,7,5)(2,9,4,3,14,6,13)$ | $\zeta_{7}$ | |
$1$ | $7$ | $(1,7,8,12,5,11,10)(2,6,3,9,13,14,4)$ | $\zeta_{7}^{5}$ | |
$1$ | $7$ | $(1,10,11,5,12,8,7)(2,4,14,13,9,3,6)$ | $\zeta_{7}^{2}$ | |
$1$ | $7$ | $(1,5,7,11,8,10,12)(2,13,6,14,3,4,9)$ | $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - \zeta_{7} - 1$ | |
$1$ | $7$ | $(1,8,5,10,7,12,11)(2,3,13,4,6,9,14)$ | $\zeta_{7}^{3}$ | |
$1$ | $14$ | $(1,9,11,6,12,4,7,13,10,3,5,2,8,14)$ | $-\zeta_{7}^{2}$ | |
$1$ | $14$ | $(1,6,7,3,8,9,12,13,5,14,11,4,10,2)$ | $\zeta_{7}^{5} + \zeta_{7}^{4} + \zeta_{7}^{3} + \zeta_{7}^{2} + \zeta_{7} + 1$ | |
$1$ | $14$ | $(1,4,5,9,7,2,11,13,8,6,10,14,12,3)$ | $-\zeta_{7}^{3}$ | |
$1$ | $14$ | $(1,3,12,14,10,6,8,13,11,2,7,9,5,4)$ | $-\zeta_{7}^{4}$ | |
$1$ | $14$ | $(1,2,10,4,11,14,5,13,12,9,8,3,7,6)$ | $-\zeta_{7}$ | |
$1$ | $14$ | $(1,14,8,2,5,3,10,13,7,4,12,6,11,9)$ | $-\zeta_{7}^{5}$ |