Properties

Label 1.145.4t1.c.a
Dimension $1$
Group $C_4$
Conductor $145$
Root number not computed
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension: $1$
Group: $C_4$
Conductor: \(145\)\(\medspace = 5 \cdot 29 \)
Artin field: 4.4.3048625.1
Galois orbit size: $2$
Smallest permutation container: $C_4$
Parity: even
Dirichlet character: \(\chi_{145}(128,\cdot)\)
Projective image: $C_1$
Projective field: \(\Q\)

Defining polynomial

$f(x)$$=$\(x^{4} - x^{3} - 54 x^{2} - 136 x - 64\)  Toggle raw display.

The roots of $f$ are computed in $\Q_{ 17 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 2 + 4\cdot 17 + 14\cdot 17^{2} + 11\cdot 17^{3} + 8\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 9 + 7\cdot 17 + 12\cdot 17^{2} + 10\cdot 17^{3} +O(17^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 10 + 4\cdot 17 + 13\cdot 17^{2} + 17^{3} + 14\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 14 + 11\cdot 17^{2} + 9\cdot 17^{3} + 10\cdot 17^{4} +O(17^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)(2,3)$
$(1,2,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)$$-1$
$1$$4$$(1,2,4,3)$$\zeta_{4}$
$1$$4$$(1,3,4,2)$$-\zeta_{4}$

The blue line marks the conjugacy class containing complex conjugation.