Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 40 a + 6 + \left(14 a + 29\right)\cdot 47 + \left(16 a + 34\right)\cdot 47^{2} + \left(2 a + 31\right)\cdot 47^{3} + \left(24 a + 19\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 7 a + 8 + \left(32 a + 7\right)\cdot 47 + \left(30 a + 5\right)\cdot 47^{2} + 44 a\cdot 47^{3} + \left(22 a + 39\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 40 a + 17 + \left(14 a + 39\right)\cdot 47 + \left(16 a + 21\right)\cdot 47^{2} + \left(2 a + 44\right)\cdot 47^{3} + \left(24 a + 35\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 40 a + 22 + \left(14 a + 17\right)\cdot 47 + \left(16 a + 34\right)\cdot 47^{2} + \left(2 a + 11\right)\cdot 47^{3} + \left(24 a + 40\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 7 a + 39 + \left(32 a + 18\right)\cdot 47 + \left(30 a + 5\right)\cdot 47^{2} + \left(44 a + 20\right)\cdot 47^{3} + \left(22 a + 18\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 7 a + 3 + \left(32 a + 29\right)\cdot 47 + \left(30 a + 39\right)\cdot 47^{2} + \left(44 a + 32\right)\cdot 47^{3} + \left(22 a + 34\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,5)(2,4)(3,6)$ |
| $(1,2,3,5,4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,5)(2,4)(3,6)$ | $-1$ |
| $1$ | $3$ | $(1,3,4)(2,5,6)$ | $-\zeta_{3} - 1$ |
| $1$ | $3$ | $(1,4,3)(2,6,5)$ | $\zeta_{3}$ |
| $1$ | $6$ | $(1,2,3,5,4,6)$ | $-\zeta_{3}$ |
| $1$ | $6$ | $(1,6,4,5,3,2)$ | $\zeta_{3} + 1$ |
The blue line marks the conjugacy class containing complex conjugation.