Properties

Label 1.13_43.6t1.3c1
Dimension 1
Group $C_6$
Conductor $ 13 \cdot 43 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$559= 13 \cdot 43 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 24 x^{4} - 11 x^{3} + 367 x^{2} - 298 x + 2491 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{559}(386,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 38 a + 33 + \left(45 a + 57\right)\cdot 73 + \left(35 a + 18\right)\cdot 73^{2} + \left(26 a + 5\right)\cdot 73^{3} + \left(36 a + 63\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 35 a + 28 + \left(27 a + 22\right)\cdot 73 + \left(37 a + 24\right)\cdot 73^{2} + \left(46 a + 6\right)\cdot 73^{3} + \left(36 a + 14\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 35 a + 33 + \left(27 a + 42\right)\cdot 73 + \left(37 a + 60\right)\cdot 73^{2} + \left(46 a + 46\right)\cdot 73^{3} + 36 a\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 65 + \left(45 a + 16\right)\cdot 73 + \left(35 a + 72\right)\cdot 73^{2} + \left(26 a + 2\right)\cdot 73^{3} + \left(36 a + 64\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 38 a + 60 + \left(45 a + 69\right)\cdot 73 + \left(35 a + 35\right)\cdot 73^{2} + \left(26 a + 35\right)\cdot 73^{3} + \left(36 a + 4\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 35 a + 1 + \left(27 a + 10\right)\cdot 73 + \left(37 a + 7\right)\cdot 73^{2} + \left(46 a + 49\right)\cdot 73^{3} + \left(36 a + 72\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,5)(3,4)$
$(1,2,4,6,5,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,6)(2,5)(3,4)$$-1$
$1$$3$$(1,4,5)(2,6,3)$$\zeta_{3}$
$1$$3$$(1,5,4)(2,3,6)$$-\zeta_{3} - 1$
$1$$6$$(1,2,4,6,5,3)$$\zeta_{3} + 1$
$1$$6$$(1,3,5,6,4,2)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.