Properties

Label 1.13_31.6t1.4
Dimension 1
Group $C_6$
Conductor $ 13 \cdot 31 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$403= 13 \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 15 x^{4} - 5 x^{3} + 199 x^{2} - 199 x + 1165 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 12 + \left(21 a + 30\right)\cdot 53 + \left(34 a + 17\right)\cdot 53^{2} + \left(45 a + 16\right)\cdot 53^{3} + \left(41 a + 50\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 49 a + 2 + \left(31 a + 11\right)\cdot 53 + \left(18 a + 39\right)\cdot 53^{2} + \left(7 a + 34\right)\cdot 53^{3} + \left(11 a + 29\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 39 + \left(21 a + 36\right)\cdot 53 + \left(34 a + 28\right)\cdot 53^{2} + \left(45 a + 45\right)\cdot 53^{3} + \left(41 a + 13\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 a + 28 + \left(31 a + 4\right)\cdot 53 + \left(18 a + 28\right)\cdot 53^{2} + \left(7 a + 5\right)\cdot 53^{3} + \left(11 a + 13\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 5 + \left(21 a + 51\right)\cdot 53 + \left(34 a + 43\right)\cdot 53^{2} + \left(45 a + 33\right)\cdot 53^{3} + \left(41 a + 44\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 49 a + 21 + \left(31 a + 25\right)\cdot 53 + \left(18 a + 1\right)\cdot 53^{2} + \left(7 a + 23\right)\cdot 53^{3} + \left(11 a + 7\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,3)(5,6)$
$(1,2,5,4,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,4)(2,3)(5,6)$ $-1$ $-1$
$1$ $3$ $(1,5,3)(2,4,6)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,3,5)(2,6,4)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,2,5,4,3,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,6,3,4,5,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.