Properties

Label 1.13_19.6t1.5c2
Dimension 1
Group $C_6$
Conductor $ 13 \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$247= 13 \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 59 x^{4} + 65 x^{3} + 341 x^{2} + 337 x + 1147 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{247}(103,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $ x^{2} + 82 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 44 a + 29 + \left(13 a + 17\right)\cdot 83 + \left(37 a + 32\right)\cdot 83^{2} + \left(29 a + 27\right)\cdot 83^{3} + \left(5 a + 43\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ a + 12 + 74 a\cdot 83 + \left(75 a + 20\right)\cdot 83^{2} + \left(45 a + 16\right)\cdot 83^{3} + \left(23 a + 31\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 82 a + 13 + \left(8 a + 73\right)\cdot 83 + \left(7 a + 21\right)\cdot 83^{2} + \left(37 a + 69\right)\cdot 83^{3} + \left(59 a + 8\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 60 a + 73 + \left(50 a + 48\right)\cdot 83 + \left(31 a + 27\right)\cdot 83^{2} + \left(78 a + 76\right)\cdot 83^{3} + \left(27 a + 56\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 39 a + 73 + \left(69 a + 69\right)\cdot 83 + \left(45 a + 55\right)\cdot 83^{2} + \left(53 a + 19\right)\cdot 83^{3} + \left(77 a + 19\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 23 a + 50 + \left(32 a + 39\right)\cdot 83 + \left(51 a + 8\right)\cdot 83^{2} + \left(4 a + 40\right)\cdot 83^{3} + \left(55 a + 6\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,2)(3,5,4)$
$(1,5)(2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,3)(4,6)$$-1$
$1$$3$$(1,6,2)(3,5,4)$$\zeta_{3}$
$1$$3$$(1,2,6)(3,4,5)$$-\zeta_{3} - 1$
$1$$6$$(1,4,2,5,6,3)$$-\zeta_{3}$
$1$$6$$(1,3,6,5,2,4)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.