Properties

Label 1.13_19.6t1.3c2
Dimension 1
Group $C_6$
Conductor $ 13 \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$247= 13 \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 6 x^{4} + x^{3} + 85 x^{2} - 118 x + 415 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{247}(113,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 30 + \left(11 a + 19\right)\cdot 31 + 20 a\cdot 31^{2} + \left(12 a + 3\right)\cdot 31^{3} + \left(26 a + 21\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 23 + \left(19 a + 30\right)\cdot 31 + \left(10 a + 23\right)\cdot 31^{2} + \left(18 a + 18\right)\cdot 31^{3} + \left(4 a + 7\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 7 + \left(19 a + 16\right)\cdot 31 + \left(10 a + 5\right)\cdot 31^{2} + \left(18 a + 27\right)\cdot 31^{3} + \left(4 a + 6\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 25 + \left(19 a + 29\right)\cdot 31 + \left(10 a + 29\right)\cdot 31^{2} + \left(18 a + 7\right)\cdot 31^{3} + \left(4 a + 30\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 28 + \left(11 a + 20\right)\cdot 31 + \left(20 a + 25\right)\cdot 31^{2} + \left(12 a + 13\right)\cdot 31^{3} + \left(26 a + 29\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 12 + \left(11 a + 6\right)\cdot 31 + \left(20 a + 7\right)\cdot 31^{2} + \left(12 a + 22\right)\cdot 31^{3} + \left(26 a + 28\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,3,5,4,6,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,5)(3,6)$$-1$
$1$$3$$(1,5,6)(2,3,4)$$-\zeta_{3} - 1$
$1$$3$$(1,6,5)(2,4,3)$$\zeta_{3}$
$1$$6$$(1,3,5,4,6,2)$$-\zeta_{3}$
$1$$6$$(1,2,6,4,5,3)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.