Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 6 + 5\cdot 31 + 16\cdot 31^{2} + 30\cdot 31^{3} + 11\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 11 + 13\cdot 31 + 17\cdot 31^{2} + 10\cdot 31^{3} + 26\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 15 + 12\cdot 31 + 28\cdot 31^{2} + 20\cdot 31^{3} + 23\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
Generators of the action on the roots
$ r_{ 1 }, r_{ 2 }, r_{ 3 } $
Character values on conjugacy classes
| Size | Order | Action on
$ r_{ 1 }, r_{ 2 }, r_{ 3 } $
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $3$ | $(1,2,3)$ | $\zeta_{3}$ |
| $1$ | $3$ | $(1,3,2)$ | $-\zeta_{3} - 1$ |
The blue line marks the conjugacy class containing complex conjugation.