Properties

Label 1.13_17.8t1.2
Dimension 1
Group $C_8$
Conductor $ 13 \cdot 17 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$221= 13 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 27 x^{6} + 125 x^{5} - 308 x^{4} - 2628 x^{3} + 2336 x^{2} + 35840 x + 65536 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 29\cdot 59 + 9\cdot 59^{2} + 4\cdot 59^{3} + 22\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 + 3\cdot 59 + 35\cdot 59^{2} + 51\cdot 59^{3} + 18\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 + 22\cdot 59 + 11\cdot 59^{2} + 41\cdot 59^{3} + 37\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 31 + 25\cdot 59 + 58\cdot 59^{2} + 21\cdot 59^{3} + 6\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 32 + 21\cdot 59 + 59^{2} + 44\cdot 59^{3} + 19\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 37 + 41\cdot 59 + 57\cdot 59^{2} + 39\cdot 59^{3} + 36\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 45 + 26\cdot 59 + 45\cdot 59^{2} + 47\cdot 59^{3} + 34\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 49 + 6\cdot 59 + 17\cdot 59^{2} + 44\cdot 59^{3} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,2,3)(4,8,6,7)$
$(1,2)(3,5)(4,6)(7,8)$
$(1,6,5,7,2,4,3,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$ $c3$ $c4$
$1$ $1$ $()$ $1$ $1$ $1$ $1$
$1$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $-1$ $-1$ $-1$ $-1$
$1$ $4$ $(1,5,2,3)(4,8,6,7)$ $\zeta_{8}^{2}$ $-\zeta_{8}^{2}$ $\zeta_{8}^{2}$ $-\zeta_{8}^{2}$
$1$ $4$ $(1,3,2,5)(4,7,6,8)$ $-\zeta_{8}^{2}$ $\zeta_{8}^{2}$ $-\zeta_{8}^{2}$ $\zeta_{8}^{2}$
$1$ $8$ $(1,6,5,7,2,4,3,8)$ $\zeta_{8}$ $\zeta_{8}^{3}$ $-\zeta_{8}$ $-\zeta_{8}^{3}$
$1$ $8$ $(1,7,3,6,2,8,5,4)$ $\zeta_{8}^{3}$ $\zeta_{8}$ $-\zeta_{8}^{3}$ $-\zeta_{8}$
$1$ $8$ $(1,4,5,8,2,6,3,7)$ $-\zeta_{8}$ $-\zeta_{8}^{3}$ $\zeta_{8}$ $\zeta_{8}^{3}$
$1$ $8$ $(1,8,3,4,2,7,5,6)$ $-\zeta_{8}^{3}$ $-\zeta_{8}$ $\zeta_{8}^{3}$ $\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.