Properties

Label 1.13_17.8t1.1c4
Dimension 1
Group $C_8$
Conductor $ 13 \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$221= 13 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 58 x^{6} + 57 x^{5} + 831 x^{4} - 1285 x^{3} - 3070 x^{2} + 6889 x - 2753 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Even
Corresponding Dirichlet character: \(\chi_{221}(77,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 43\cdot 47 + 15\cdot 47^{2} + 16\cdot 47^{3} + 16\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 7\cdot 47 + 47^{2} + 36\cdot 47^{3} + 9\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 + 35\cdot 47 + 32\cdot 47^{2} + 43\cdot 47^{3} + 25\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 + 5\cdot 47 + 33\cdot 47^{2} + 4\cdot 47^{3} + 41\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 + 32\cdot 47 + 2\cdot 47^{2} + 20\cdot 47^{3} + 19\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 31 + 44\cdot 47 + 14\cdot 47^{2} + 40\cdot 47^{3} + 4\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 39 + 13\cdot 47 + 29\cdot 47^{2} + 44\cdot 47^{3} + 43\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 45 + 5\cdot 47 + 11\cdot 47^{2} + 29\cdot 47^{3} + 26\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,6,7,3,5,4)$
$(1,5,7,8)(2,4,3,6)$
$(1,7)(2,3)(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,7)(2,3)(4,6)(5,8)$$-1$
$1$$4$$(1,8,7,5)(2,6,3,4)$$-\zeta_{8}^{2}$
$1$$4$$(1,5,7,8)(2,4,3,6)$$\zeta_{8}^{2}$
$1$$8$$(1,2,8,6,7,3,5,4)$$-\zeta_{8}^{3}$
$1$$8$$(1,6,5,2,7,4,8,3)$$-\zeta_{8}$
$1$$8$$(1,3,8,4,7,2,5,6)$$\zeta_{8}^{3}$
$1$$8$$(1,4,5,3,7,6,8,2)$$\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.