Properties

Label 1.133.6t1.a
Dimension $1$
Group $C_6$
Conductor $133$
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:\(133\)\(\medspace = 7 \cdot 19 \)
Artin number field: Galois closure of 6.0.5945113699.2
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Projective image: $C_1$
Projective field: \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: \(x^{2} + 49 x + 2\)  Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 22 a + \left(6 a + 3\right)\cdot 53 + \left(3 a + 51\right)\cdot 53^{2} + \left(a + 14\right)\cdot 53^{3} + \left(46 a + 4\right)\cdot 53^{4} +O(53^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 31 a + 35 + \left(46 a + 6\right)\cdot 53 + \left(49 a + 4\right)\cdot 53^{2} + \left(51 a + 16\right)\cdot 53^{3} + \left(6 a + 28\right)\cdot 53^{4} +O(53^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 33 a + 13 + \left(12 a + 25\right)\cdot 53 + \left(36 a + 2\right)\cdot 53^{2} + \left(33 a + 31\right)\cdot 53^{3} + \left(24 a + 7\right)\cdot 53^{4} +O(53^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 20 a + 39 + \left(40 a + 42\right)\cdot 53 + \left(16 a + 28\right)\cdot 53^{2} + \left(19 a + 23\right)\cdot 53^{3} + \left(28 a + 19\right)\cdot 53^{4} +O(53^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 5 a + \left(24 a + 48\right)\cdot 53 + \left(7 a + 6\right)\cdot 53^{2} + \left(50 a + 46\right)\cdot 53^{3} + \left(7 a + 5\right)\cdot 53^{4} +O(53^{5})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 48 a + 20 + \left(28 a + 33\right)\cdot 53 + \left(45 a + 12\right)\cdot 53^{2} + \left(2 a + 27\right)\cdot 53^{3} + \left(45 a + 40\right)\cdot 53^{4} +O(53^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,3,6,2,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,2)(3,4)(5,6)$ $-1$ $-1$
$1$ $3$ $(1,6,4)(2,5,3)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,4,6)(2,3,5)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,3,6,2,4,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,5,4,2,6,3)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.