Properties

Label 1.131.5t1.1
Dimension 1
Group $C_5$
Conductor $ 131 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$131 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 52 x^{3} + 89 x^{2} + 109 x - 193 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 13\cdot 19 + 9\cdot 19^{2} + 16\cdot 19^{3} + 5\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 + 2\cdot 19 + 12\cdot 19^{2} + 18\cdot 19^{3} + 16\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 + 14\cdot 19 + 17\cdot 19^{2} + 12\cdot 19^{3} + 7\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 + 5\cdot 19 + 13\cdot 19^{2} + 12\cdot 19^{3} + 10\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 + 2\cdot 19 + 4\cdot 19^{2} + 15\cdot 19^{3} + 15\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3,5,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$ $c3$ $c4$
$1$ $1$ $()$ $1$ $1$ $1$ $1$
$1$ $5$ $(1,3,5,2,4)$ $\zeta_{5}$ $\zeta_{5}^{2}$ $\zeta_{5}^{3}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$ $5$ $(1,5,4,3,2)$ $\zeta_{5}^{2}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}$ $\zeta_{5}^{3}$
$1$ $5$ $(1,2,3,4,5)$ $\zeta_{5}^{3}$ $\zeta_{5}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}^{2}$
$1$ $5$ $(1,4,2,5,3)$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}^{3}$ $\zeta_{5}^{2}$ $\zeta_{5}$
The blue line marks the conjugacy class containing complex conjugation.