Properties

Label 1.13.6t1.a.a
Dimension $1$
Group $C_6$
Conductor $13$
Root number not computed
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(13\)
Artin field: \(\Q(\zeta_{13})^+\)
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: even
Dirichlet character: \(\chi_{13}(10,\cdot)\)
Projective image: C_1
Projective field: \(\Q\)

Defining polynomial

$f(x)$$=$\(x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1\)  Toggle raw display.

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \(x^{2} + 29 x + 3\)  Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 3 a + 4\cdot 31 + \left(11 a + 23\right)\cdot 31^{2} + 4\cdot 31^{3} + \left(4 a + 10\right)\cdot 31^{4} +O(31^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 28 a + 6 + \left(30 a + 1\right)\cdot 31 + \left(19 a + 14\right)\cdot 31^{2} + \left(30 a + 25\right)\cdot 31^{3} + \left(26 a + 17\right)\cdot 31^{4} +O(31^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 24 a + 9 + \left(2 a + 12\right)\cdot 31 + \left(14 a + 18\right)\cdot 31^{2} + \left(27 a + 15\right)\cdot 31^{3} + 15 a\cdot 31^{4} +O(31^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 18 a + 24 + \left(15 a + 18\right)\cdot 31 + \left(22 a + 28\right)\cdot 31^{2} + \left(23 a + 13\right)\cdot 31^{3} + \left(20 a + 5\right)\cdot 31^{4} +O(31^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 13 a + 29 + 15 a\cdot 31 + \left(8 a + 27\right)\cdot 31^{2} + \left(7 a + 7\right)\cdot 31^{3} + \left(10 a + 23\right)\cdot 31^{4} +O(31^{5})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 7 a + 26 + \left(28 a + 24\right)\cdot 31 + \left(16 a + 12\right)\cdot 31^{2} + \left(3 a + 25\right)\cdot 31^{3} + \left(15 a + 4\right)\cdot 31^{4} +O(31^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,6)(4,5)$
$(1,4,3)(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)(3,6)(4,5)$$-1$
$1$$3$$(1,4,3)(2,5,6)$$\zeta_{3}$
$1$$3$$(1,3,4)(2,6,5)$$-\zeta_{3} - 1$
$1$$6$$(1,5,3,2,4,6)$$-\zeta_{3}$
$1$$6$$(1,6,4,2,3,5)$$\zeta_{3} + 1$

The blue line marks the conjugacy class containing complex conjugation.